Hi, I am David Allen Boothman, My LiveDNA is 1.5975
 
   
  Home
 
 
 
Dr. David Allen Boothman
 
Highest Degree: Ph.D. in Microbiology and Immunology from University of Miami, USA
 
Institute: University of Texas Southwestern Medical Center, USA
 
Area of Interest: Biomedical Sciences
  •   Cellular and Molecular Biology
  •   DNA Repair
  •   Mammalian Cells
  •   Eukaryotic Gene Expression
 
URL: http://livedna.org/1.5975
 
My SELECTED Publications
1:    Lo, K.K., E.A. Bey, B. Patra, D.D. Benson, D.A. Boothman, C.C. Silliman and C.C. Barnett Jr., 2013. Hemoglobin-based oxygen carrier mitigates transfusion-mediated pancreas cancer progression. Ann. Surg. Oncol., 20: 2073-2077.
CrossRef  |  PubMed  |  Direct Link  |  
2:   Ai, H., J.J. Pink, X. Shuai, D.A. Boothman and J. Gao, 2005. Interactions between self-assembled polyelectrolyte shells and tumor cells. J. Biomed. Mater. Res., 73: 303-312.
CrossRef  |  PubMed  |  
3:   Araki, S., J.A. Eitel, C.N. Batuello, K. Bijangi-Vishehsaraei and X.J. Xie et al., 2010. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J. Clin. Invest., 120: 290-293.
CrossRef  |  
4:   Araki, S., S. Israel, K.S. Leskov, T.L. Criswell and D.A. Boothman et al ., 2005. Clusterin proteins: stress-inducible polypeptides with proposed functions in multiple organ dysfunction. Br. J. Radiol., 27: 106-113.
PubMed  |  Direct Link  |  
5:   Badie, B., C.S. Goh, J. Klaver, H. Herweijer and D.A. Boothman, 1999. Combined radiation and p53 gene therapy of malignant glioma cells. Cancer Gene Ther., 6: 155-162.
Direct Link  |  
6:   Badie, B., M.H. Kramar, R. Lau, D.A. Boothman, J.S. Economou and K.L. Black, 1998. Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J. Neuro-Oncol., 37: 217-222.
CrossRef  |  
7:   Bentle, M.S., E.A. Bey, Y., K.E. Reinicke and D.A. Boothman, 2006. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J. Mol. Histol., 37: 203-218.
Direct Link  |  
8:   Bentle, M.S., K.E. Reinicke, E.A. Bey, D. Spitz and D.A. Boothman, 2006. Calcium regulation of PARP-1 hyperactivation for altered cellular metabolism and inhibition of DNA repair. Biol. Chem., 261: 33684-33696.
9:   Bentle, M.S., K.E. Reinicke, Y. Dong, E.A. Bey and D.A. Boothman, 2007. Nonhomologous end joining recombination is a resistance factor to NQO1-β-lapachone. Cancer Res., 67: 6936-6945.
10:   Berry, S.E., C. Garces, H.S. Hwang, K. Kunugi and M. Meyers et al., 1999. The mismatch repair protein, hMHL1, mediates 5-substituted halogenated thymidine analog cytotoxicity, DNA incorporation and radiosensitization in human colon cancer cells. Cancer Res., 59: 1840-1845.
11:   Bey, E.A., K.E. Reinicke, M.C. Srougi, M. Varnes and V.E. Anderson et al., 2013. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Mol. Can. Ther., 12: 2110-2120.
CrossRef  |  PubMed  |  Direct Link  |  
12:   Bey, E.A., M.S. Bentle, K.E. Reinicke, Y. Dong and C.R. Yang et al., 2007. Use of β-lapachone for therapy against nonsmall cell lung cancer. Proc. Natl. Acad., Sci., 104: 11832-11837.
13:   Bey, E.A., S.M. Wuerzberger-David, J.J. Pink, C.R. Yang and S. Araki et al., 2006. Mornings with Art, lessons learned: Feedback regulation, restriction threshold biology and redundancy govern molecular stress responses. J. Cell. Phsyiol., 209: 604-610.
CrossRef  |  
14:   Biggle, T.V., D.A. Boothman, C.A. Pfaffenberger and S. Greer, 1986. Analysis of 5-fluoro-2'-deoxycytidine and 5-trifluoromethyl-2'-deoxycytidine and their related antimetabolites by high-performance liquid chromatography. J. Chromatog., 381: 343-356.
Direct Link  |  
15:   Blanco, E., E.A. Bey, C. Khemtong, S.G. Yang and J. Setti-Guthi et al., 2010. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res., 70: 3896-3904.
CrossRef  |  PubMed  |  
16:   Blanco, E., E.A. Bey, Y. Dong, B.D. Weinberg and D.M. Sutton et al., 2007. Modulating β-lapachone release from polymer millirods through cyclodextrin complexation. J. Control Release, 122: 365-374.
17:   Boothman, D.A. and A.B. Pardee, 1989. Inhibition of radiation-induced neoplastic transformation by β-lapachone. Proc. Natl. Acad. Sci., USA., 86: 4963-4967.
Direct Link  |  
18:   Boothman, D.A. and J. Reichrath, 2005. New basic science initiatives for improved understanding of radiation-induced Multi-Organ Dysfunction Syndrome (MODS). Br. J. Radiol., 27: 157-160.
Direct Link  |  
19:   Boothman, D.A. and S.W. Lee, 1992. Regulation of gene expression in mammalian cells following ionizing radiation. Yokohama Med. Bull., 42: 137-149.
20:   Boothman, D.A., 1994. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts. Radiat. Res., 138: 121-125.
Direct Link  |  
21:   Boothman, D.A., A.I. Geller and A.B. Pardee, 1989. Expression of the E. coli Lac Z gene from a defective HSV-1 vector in various human normal, cancer-prone and tumor cells. FEBS Lett., 258: 159-162.
CrossRef  |  
22:   Boothman, D.A., D.K. Trask and A.B. Pardee, 1989. Inhibition of potentially lethal DNA damage repair in human tumor cells by β-lapachone, an activator of topoisomerase I. Cancer Res., 49: 605-612.
Direct Link  |  
23:   Boothman, D.A., E. Odegaard, C.R. Yang, K. Hosley and M. Mendonca, 1998. Molecular analyses of adaptive survival responses (ASRs): Role of ASRs in radiotherapy. Human Exp. Toxicol., 17: 448-453.
Direct Link  |  
24:   Boothman, D.A., G. Majmudar and T. Johnson, 1994. Immediate X-ray-inducible responses from mammalian cells. Radiat. Res., 138: 44-46.
Direct Link  |  
25:   Boothman, D.A., H.L. Burrows, C.R. Yang, T.D. Davis and S.M. Wuerzberger et al., 1997. Damage sensing mechanisms in human cells after ionizing radiation. Stem Cells, 15: 27-42.
CrossRef  |  
26:   Boothman, D.A., I. Bouvard and E.N. Hughes, 1989. Identification and characterization of X-ray-induced proteins in human cells. Cancer Res., 49: 2871-2878.
Direct Link  |  
27:   Boothman, D.A., I.W. Lee and W.S. Sahijdak, 1994. Isolation of an X-Ray-Responsive Element (XRE) in the promoter region of tissue-type plasminogen activator: Potential uses of XREs for gene therapy? Radiat. Res., 138: 68-71.
28:   Boothman, D.A., M. Meyers, E. Odegaard and M. Wang, 1996. Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation. Mutation Res., 358: 143-153.
CrossRef  |  
29:   Boothman, D.A., M. Meyers, N. Fukunaga and S.W. Lee, 1993. Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. Proc. Natl. Acad. Sci., USA., 90: 7200-7204.
Direct Link  |  
30:   Boothman, D.A., M. Wang and S.W. Lee, 1991. Induction of tissue-type plasminogen activator by ionizing radiation in human malignant melanoma cells. Cancer Res., 51: 5587-5595.
Direct Link  |  
31:   Boothman, D.A., M. Wang, R.A. Schea, H.L. Burrows, S. Strickfaden and J.K. Owens, 1992. Posttreatment exposure to camptothecin enhances the lethal effects of X-rays on radioresistant human malignant melanoma cells. Int. J. Radiat. Oncol. Biol. Phys., 24: 939-948.
CrossRef  |  
32:   Boothman, D.A., N. Fukunaga and M. Wang, 1994. Down-regulation of topoisomerase I in mammalian cells following ionizing radiation. Cancer Res., 54: 4618-4626.
Direct Link  |  
33:   Boothman, D.A., R. Schlegel and A.B. Pardee, 1988. Anticarcinogenic potential of DNA-repair modulators. Mutation Research/Fundamental Mol. Mech. Mutagen., 202: 393-411.
CrossRef  |  
34:   Boothman, D.A., S. Greer and A.B. Pardee, 1987. Potentiation of halogenated pyrimidine radiosensitizers in human carcinoma cells by β-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran- 5,6-dione), a novel DNA repair inhibitor. Cancer Res., 47: 5361-5366.
Direct Link  |  
35:   Boothman, D.A., T.V. Briggle and S. Greer, 1985. Metabolic channeling of 5-fluoro-2'-deoxycytidine utilizing inhibitors of its deamination in cell culture. Mol. Pharmacol., 27: 584-594.
Direct Link  |  
36:   Boothman, D.A., T.V. Briggle and S. Greer, 1987. Protective, tumor-selective dual pathway activation of 5-fluoro-2'-deoxycytidine provided by tetrahydrouridine in mice bearing mammary adenocarcinoma-755. Cancer Res., 47: 2344-2353.
Direct Link  |  
37:   Boothman, D.A., T.V. Briggle and S. Greer, 1987. Tumor-selective metabolism of 5-fluoro-2'-deoxycytidine coadministered with tetrahydrouridine compared to 5-fluorouracil in mice bearing Lewis lung carcinoma. Cancer Res., 47: 2354-2362.
Direct Link  |  
38:   Boothman, D.A., T.W. Davis and W.M. Sahijdak, 1994. Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys., 30: 391-398.
CrossRef  |  
39:   Camacho, C.V., B. Mukherjee, B. McEllin, L.H. Ding and B. Hu et al., 2010. Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks. Carcinogenesis, 31: 1889-1896.
CrossRef  |  
40:   Cao, L., L.S. Li, C. Spruell, L. Xiao and G. Chakrabarti et al., 2014. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Antioxid. Redox Signal., 21: 237-250.
CrossRef  |  Direct Link  |  
41:   Chakraborty, S., L. Li, H. Tang, Y. Xie and V.T. Puliyappadamba et al., 2013. Cytoplasmic TRADD confers a worse prognosis in glioblastoma. Neoplasia, 15: 888-897.
PubMed  |  Direct Link  |  
42:   Chakraborty, S., L. Li, V.T. Puliyappadamba, G. Guo and K.J. Hatanpaa et al., 2014. Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nat. Commun., Vol. 5. 10.1038/ncomms6811.
CrossRef  |  Direct Link  |  
43:   Chauncey, S.S., D.A. Boothman and A.A. Habib, 2009. The receptor interacting protein 1 mediates a link between NFκ B and PI3-kinase signaling. Cell Cycle, 8: 2671-2672.
Direct Link  |  
44:   Choi, E.K., K. Terai, I.M. Ji, Y.H. Kook and K.H. Park et al., 2007. Radiation-induced up-regulation of NAD(P)H:Quinone oxidoreductase (NQO1) potentiates the effect of bioreductive β-lapachone against cancer cells. Mol. Cancer Ther., 9: 634-642.
45:   Criswell, T. and D.A. Boothman, 2006. Regulation and functions of clusterin: A protector against stress. Acta Med. Nagasaki, 50: 102-110.
46:   Criswell, T., D. Klokov, J.P. Lavik, M. Beman and, D.A. Boothman, 2003. Repression of IR-inducible clusterin expression by the p53 tumor suppressor protein. Can. Biol. Ther., 2: 25-31.
PubMed  |  Direct Link  |  
47:   Criswell, T., M. Beman, S. Araki, K. Leskov, E. Cataldo, L. Mayo and D.A. Boothman, 2005. Delayed activation of insulin-like growth factor-1 receptor/src/mapk/egr-1 signaling regulates clusterin expression, a pro-survival factor. J. Biol. Chem., 280: 14212-14221.
CrossRef  |  
48:   Davis, T.W., C. Wilson-Van Patten, M. Meyers, K.A. Kunugi and S. Cuthill et al., 1998. Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res., 58: 767-778.
Direct Link  |  
49:   Ding, H., B.D. Sumer, C.W. Kessinger, Y. Dong, G. Huang, D.A. Boothman and J. Gao, 2011. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J. Control. Rele., 151: 271-277.
CrossRef  |  PubMed  |  Direct Link  |  
50:   Ding, H., H. Yu, Y. Dong, R. Tian and G. Huang et al., 2011. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release, 156: 276-280.
CrossRef  |  PubMed  |  Direct Link  |  
51:   Doi, S., Y. Zou, O. Togao, J.V. Pastor and G.B. John et al., 2011. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem., 286: 8655-8665.
Direct Link  |  
52:   Dong, Y., E.A. Bey, L.S. Li, W. Kabbani and J. Yan et al., 2010. Prostate cancer radiosensitization through poly (ADP-Ribose) polymerase-1 hyperactivation. Cancer Res., 70: 8088-8096.
CrossRef  |  
53:   Dong, Y., S.F. Chin, K. Kabbani, X.J. Xie and E. Blanco et al., 2009. Intratumoral implantation of β-lapachone-encapsulated polymer millirod for prostate cancer therapy. Clin. Cancer Res., 15: 131-139.
54:   Fattah, F.J., K. Hara, K.R. Fattah, C. Yang and N. Wu et al., 2014. The transcription factor TFII-I promotes DNA translesion synthesis and genomic stability. PLoS Genet., Vol. 10, No. 6. 10.1371/journal.pgen.1004419.
CrossRef  |  Direct Link  |  
55:   Forouzannia, A., J. Schiller, J. Berlin, P. Hutson and D.A. Boothman et al., 2004. A phase I study of Topotecan, as a radiosensitizer, for thoracic malignancies. Lung Can., 44: 111-119.
CrossRef  |  PubMed  |  
56:   Fukunaga, N., H.L. Burrows, M. Meyers, R.A. Schea and D.A. Boothman, 1992. Enhanced induction of tissue-type plasminogen activator in normal human cells compared to cancer-prone cells following ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys., 24: 949-957.
CrossRef  |  
57:   Galindo, C.L., J.F. McCormick, V.J. Bubb, D.H. Abid Alkadem and L.S. Li et al., 2011. A long AAAG repeat allele in the 5' UTR of the ERR-gamma gene is correlated with breast cancer predisposition and drives promoter activity in MCF-7 breast cancer cells. Breast Cancer Res. Treat., 130: 41-48.
58:   Galindo, C.L., L.J. McIver, H. Tae, J.F. McCormick and M.A. Skinner et al., 2011. Sporadic breast cancer patients' germline DNA exhibit an AT‐rich microsatellite signature. Genes Chromosomes Cancer, 50: 275-283.
59:   Glen, V.L., P.R. Hutson, N.J. Kehrli and D.A. Boothman and G. Wilding, 1997. Reversed-phase high-performance liquid chromatography method for determination of β-lapachone and 3-hydroxy-β-lapachone in plasma. J. Chromatogr., 692: 181-186.
60:   Goetz, E., Y. Zou, X. Luo, J. Morales, A. Rommel, L. Mayo and D.A. Boothman, 2011. IGF-1-sCLU expression as a marker for genomic instability and for pro-survival function. Oncogene, 30: 3745-3754.
61:   Gomez, J.A., V. Gama, T. Yoshida, W. Sun and P. Hayes et al., 2007. Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem. Soc., Trans., 35: 797-801.
PubMed  |  
62:   Huang, G., H. Chen, Y. Dong, X. Luo and H. Yu et al., 2013. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 3: 116-126.
CrossRef  |  PubMed  |  Direct Link  |  
63:   Huang, T.T., S.M. Wuerzberger-Davis, B.J. Seufzer, S.D. Shumway, T. Kurama, D.A. Boothman and S. Miyamoto, 2000. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J. Biol. Chem., 275: 9501-9509.
Direct Link  |  
64:   Huang, X., Y. Dong, E.A. Bey, J.A. Kilgore, J.S. Bair and L.S. Li et al., 2012. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Can. Res., 72: 3038-3047.
CrossRef  |  PubMed  |  Direct Link  |  
65:   Hughes, E.N. and D.A. Boothman, 1991. Effect of caffeine on the expression of a major X-ray induced protein in human tumor cells. Radiat. Res., 125: 313-317.
Direct Link  |  
66:   Kalka, K., N. Ahmad, T. Criswell, D.A. Boothman and H. Mukhtar, 2000. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors. Cancer Res., 60: 5984-5987.
Direct Link  |  
67:   Khemtong, C., C.W. Kessinger, J. Ren, E.A. Bey, D.A. Boothman, A.D. Sherry and J.T. Gao, 2009. On the superparamagnetic nanoprobes for cancer molecular imaging. Cancer Res., 69: 1651-1658.
68:   Klokov, D., K. Leskov, S. Araki, Y. Zou and E. Goetz et al., 2013. Low dose IR-induced IGF-1-sCLU expression: A p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect. Oncogene, 32: 479-490.
69:   Klokov, D., T. Criswell, K.S. Leskov, S. Araki, L. Mayo and D.A. Boothman, 2004. IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutat. Res., 568: 97-110.
CrossRef  |  PubMed  |  
70:   Klokov, D., T. Criswell, L. Sampath, K.S. Leskov and D.A. Boothman et al ., 2003. Clusterin: A protein with multiple functions as a potential ionizing radiation exposure marker. Int. Cong. Ser., 27: 2784-2793.
CrossRef  |  
71:   Konstantinidou, G., E.A. Bey, A. Rabellino, K. Schuster and M.S. Maira et al., 2009. Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations. Cancer Res., 69: 7644-7652.
CrossRef  |  
72:   Lamond, J.P., M. Wang, T.J. Kinsella and D.A. Boothman, 1996. Concentration and timing dependence of lethality enhancement between topotecan, a topoisomerase I inhibitor and ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys., 36: 361-368.
CrossRef  |  
73:   Lamond, J.P., M. Wang, T.J. Kinsella and D.A. Boothman, 1996. Radiation lethality enhancement with 9-aminocamptothecin: Comparison to other topoisomerase I inhibitors. Int. J. Radiat. Oncol. Biol. Phys., 36: 369-376.
CrossRef  |  
74:   Lamond, J.P., M.P. Mehta and D.A. Boothman, 1996. The potential of topoisomerase I inhibitors in the treatment of CNS malignancies: Review of the synergistic effect between topotecan and radiation. J. Neuro-Oncol., 30: 1-6.
75:   Leskov, K.S., D.Y. Klokov, J. Li, T.J. Kinsella and D.A. Boothman, 2003. Synthesis and functional analyses of nuclear clusterin, a cell death protein. J. Biol. Chem., 278: 11590-11600.
CrossRef  |  
76:   Leskov, K.S., S. Araki, J.P. Lavik, J.A. Gomez and V. Gama et al., 2011. CRM1 protein-mediated regulation of nuclear clusterin (nCLU), an ionizing radiation-stimulated, Bax-dependent pro-death factor. J. Biol. Chem., 286: 40083-40090.
CrossRef  |  PubMed  |  Direct Link  |  
77:   Li, L., J.C. Morales, M. Veigl, D. Sedwick and S. Greer et al., 2009. DNA mismatch repair (MMR)-dependent 5-fluorouracil cytotoxicity and the potential for new therapeutic targets. Br. J. Pharmacol., 150: 679-692.
Direct Link  |  
78:   Li, L., S. Chakraborty, C.R. Yang, K.J. Hatanpaa and D.J. Cipher et al., 2014. An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII. Oncogene, 33: 4253-4264.
CrossRef  |  Direct Link  |  
79:   Li, L.S., E.A. Bey, Y. Dong, J. Meng and B. Patra et al., 2011. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Clin. Cancer Res., 17: 275-285.
CrossRef  |  
80:   Li, L.S., J.C. Morales, A. Hwang, M.W. Wagner and D.A. Boothman, 2008. DNA mismatch repair-dependent activation of c-Abl/p73α/GADD45α-mediated apoptosis. J. Biol. Chem., 283: 21394-21403.
CrossRef  |  
81:   Limoli, C.L., A. Hartmann, L. Shephardm, C.R. Yang, D.A. Boothman, J. Bartholomew and W.F. Morgan, 1998. Apoptosis, reproductive failure and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res., 58: 3712-3718.
Direct Link  |  
82:   Limoli, C.L., M.I. Kaplan, J. Corcoran, M. Meyers, D.A. Boothman and W.F. Morgan, 1997. Chromosomal Instability and Its relationship to other end points of genomic instability. Cancer Res., 57: 5557-5563.
Direct Link  |  
83:   Luo, X., M. Suzuki, S.A. Ghandhi, S.A. Amundson and D.A. Boothman, 2014. ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS ONE, Vol. 9, No. 6. 10.1371/journal.pone.0099983.
CrossRef  |  Direct Link  |  
84:   Ma, X., X. Huang, G. Huang, L. Li and Y. Wang et al., 2014. Prodrug strategy to achieve lyophilizable, high drug loading micelle formulations through diester derivatives of β-lapachone. Adv. Healthcare Mater., 3: 1210-1216.
CrossRef  |  Direct Link  |  
85:   Ma, X., X. Huang, Z. Moore, G. Huang and J.A. Kilgore et al., 2015. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J. Controlled Release, 200: 201-211.
CrossRef  |  PubMed  |  Direct Link  |  
86:   Markopoulou, S., E. Kontargiris, C. Batsi, T. Tzavaras and I. Trougakos et al., 2009. Vanadium‐induced apoptosis of HaCaT cells is mediated by c‐fos and involves nuclear accumulation of clusterin. Febs J., 276: 3784-3799.
CrossRef  |  
87:   Mekras, J.A., D.A. Boothman and S. Greer, 1985. Use of 5-trifluoromethyldeoxycytidine and tetrahydrouridine to circumvent catabolism and exploit high levels of cytidine deaminase in tumors to achieve DNA- and target-directed therapies. Cancer Res., 45: 5270-5280.
Direct Link  |  
88:   Mekras, J.A., D.A. Boothman, L.M. Perez and S. Greer, 1984. Use of 5-fluorodeoxycytidine and tetrahydrouridine to exploit high levels of deoxycytidylate deaminase in tumors to achieve DNA- and target-directed therapies. Cancer Res., 44: 2551-2560.
Direct Link  |  
89:   Mendonca, MS, K.L. Howard, D.L. Farrington, L.A. Desmond and T.M. Temples et al., 1999. Delayed apoptotic responses associated with radiation-induced neoplastic transformation of human hybrid cells. Cancer Res., 59: 3972-3979.
Direct Link  |  
90:   Meyers, M., A, Mazurek, C. Schmutte, R. Fishel and D.A. Boothman, 2004. DNA mismatch repair detection and cellular responses to damage caused by 5-fluoro-2'-deoxyuridine exposure. J. Biol. Chem., 280: 5516-5526.
91:   Meyers, M., A. Hwang, M. Wagner, and D.A. Boothman, 2004. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. Environ. Mol. Mutagen., 44: 249-264.
CrossRef  |  PubMed  |  
92:   Meyers, M., M. Theodosiou, S. Acharya, E. Odegaard and T. Wilson et al., 1997. Cell cycle regulation of the human DNA mismatch repair genes, hMSH-2, hMLH-1 and hPMS-2. Cancer Res., 57: 206-208.
Direct Link  |  
93:   Meyers, M., M. Wagner, A. Hwang, A. Bruening, D. Sedwick, M. Veigl and D.A. Boothman, 2003. A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene, 22: 7376-7388.
CrossRef  |  PubMed  |  
94:   Meyers, M., M. Wagner, H.S. Hwang, T.J. Kinsella and D.A. Boothman, 2001. Role of DNA mismatch repair in FdUrd-mediated cytotoxicity. Cancer Res., 61: 5193-5201.
95:   Miyamoto, S., T.T. Huang, S. Wuerzberger-Davis, W.G. Bornmann and J.J. Pink et al., 2000. Cellular and molecular responses to topoisomerase I poisons. Exploiting synergy for improved radiotherapy. Ann. New York Acad. Sci., 922: 274-292.
Direct Link  |  
96:   Morales, J.C., P. Richard, A. Rommel, F.J. Fattah and E.A. Motea et al., 2014. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res., 42: 4996-5006.
CrossRef  |  Direct Link  |  
97:   Mukherjee, B., B. McEllin, C.V. Camacho, N. Tomimatsu and S. Sirasanagandala et al., 2009. EGFRvIII and DNA double-strand break repair: A molecular mechanism for radioresistance in glioblastoma. Cancer Res., 69: 4252-4259.
CrossRef  |  
98:   Nasongkla, N., A.F. Wiedmann, A. Bruening, M. Beman and D. Ray et al., 2003. Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes. Pharm. Res., 20: 1626-1633.
CrossRef  |  PubMed  |  
99:   Nasongkla, N., E. Bey, J. Ren, H. Ai, and D.A. Boothmanet al ., 2006. Multifunctional polymeric micelles as cancer-targeted, mri-ultrasensitive drug delivery systems. Nanoletters, 6: 2427-2430.
CrossRef  |  
100:   Nasongkla, N., X. Shuai, H. Ai, B.D. Weinberg, J. Pink, D.A. Boothman and J. Gao, 2004. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Edn., 43: 6323-6327.
CrossRef  |  Direct Link  |  
101:   Odegaard, E., C.R. Yang and D.A. Boothman, 1998. DNA-dependent protein kinase does not play a role in adaptive survival responses to ionizing radiation. Perspect. Environ. Health Sci., 106: 301-305.
Direct Link  |  
102:   Ough, M., A. Lewis, E. Bey, M. Hinkhouse and D.A. Boothmanet al ., 2005. Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Can. Biol. Ther., 4: 54-61.
PubMed  |  
103:   Park, H.J., K.J. Ahn, S.D. Ahn, E. Choi and D.A. Boothman et al ., 2005. Radiation increases the sensitivity of cancer cells to β-lapachone. Int. J. Rad. Oncol. Biol. Phys., 61: 212-219.
104:   Park, S., D. Zhao, K.J. Hatanpaa, B.J. Mickey and D. Saha et al., 2009. RIP1 activates PI3K-Akt via a dual mechanism involving NF-kappaB mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and downregulation of PTEN. Cancer Res., 69: 4107-4115.
CrossRef  |  
105:   Park, S., K.J. Hatanpaa, Y. Xie, B.E. Mickey and C.J. Madden et al., 2009. The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res., 69: 2809-2816.
CrossRef  |  
106:   Pink, J.J., S.M. Planchon, C. Tagliarino, M.E. Varnes, D. Siegel and D.A. Boothman, 2000. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. J. Biol. Chem., 275: 5416-5424.
Direct Link  |  
107:   Pink, J.J., S.M. Wuerzberger-Davis, C. Tagliarino, S.M. Planchon, X.H. Yang, C.J. Froelich and D.A. Boothman, 2000. A novel non-caspase-mediated proteolytic pathway activated in breast cancer cells during β-lapachone-mediated apoptosis. Exp. Cell Res., 255: 144-155.
108:   Planchon, S.M., J.J. Pink, C. Tagliarino, W.G. Bornmann, M.E. Varnes and D.A. Boothman, 2001. β-Lapachone-induced apoptosis in human prostate cancer cells: Involvement of NQO1/xip3. Exp. Cell Res., 267: 95-106.
CrossRef  |  
109:   Planchon, S.M., S. Wuerzberger, B. Frydman, D.T. Witiak and P. Hutson et al., 1995. β-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: A p53-independent response. Cancer Res., 55: 3706-3711.
Direct Link  |  
110:   Planchon, S.M., S.M. Wuerzberger-Davis, J.J. Pink, K.A. Robertson, W.G. Bornmann and D.A. Boothman, 1999. Bcl-2 protects against beta-lapachone-mediated caspase 3 activation and apoptosis in human myeloid leukemia (HL-60) cells. Oncol. Rep., 6: 485-492.
Direct Link  |  
111:   Pucci, S., P. Mazzarelli, F. Sesti, D.A. Boothman and L.G. Spagnoli, 2009. Interleukin-6 affects cell death escaping mechanisms acting on Bax-Ku70-Clusterin interactions in human colon cancer progression. Cell Cycle, 8: 473-481.
Direct Link  |  
112:   Puliyappadamba, V.T., S. Chakraborty, S.S. Chauncey, L. Li and K.J. Hatanpaa et al., 2013. Opposing effect of EGFRWT on EGFRvIII-mediated NF-κB activation with RIP1 as a cell death switch. Cell Rep., 4: 764-775.
CrossRef  |  PubMed  |  Direct Link  |  
113:   Reinicke, K.E., E.A. Bey, M.S. Bentle, J.J. Pink and D.A. Boothmanet al ., 2005. Development of beta-lapachone prodrugs for therapy against human cancer cells with elevated NAD(P)H: Quinone oxidoreductase 1 levels. Clin. Can. Res., 11: 3055-3064.
PubMed  |  Direct Link  |  
114:   Sahijdak, W.S., C.R. Yang, J.S. Zuckerman, M. Meyers and D.A. Boothman, 1994. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation. Radiat. Res., 138: 47-51.
Direct Link  |  
115:   Santos, O., L.M. Perez, T.V. Briggle, D.A. Boothman and S. Greer, 1990. Radiation, pool size and incorporation studies in mice with 5-chloro-2'-deoxycytidine. Int. J. Radiat. Oncol. Biol. Phys., 19: 357-365.
CrossRef  |  
116:   Separovic, D., J.J. Pink, N.A. Oleinick, M. Kester and D.A. Boothman et al., 1999. Niemann-Pick human lymphoblasts are resistant to phthalocyanine 4-photodynamic therapy-induced apoptosis. Biomed. Biophys. Res. Commun., 258: 506-512.
Direct Link  |  
117:   Shannan, B., M. Seifert, D.A. Boothman, W. Tilgen and J. Reichrath, 2006. Clusterin and DNA repair: A new function in cancer for a key player in apoptosis and cell cycle control. J. Mol. Histol., 37: 183-188.
Direct Link  |  
118:   Shannan, B., M. Seifert, K. Leskov, D. Boothman, C. Pfohler, W. Tilgen and J. Reichrath, 2006. Clusterin (CLU) and melanoma growth: CLU is expressed in malignant melanoma and 1, 25-dihydroxyvitamin D3 modulates expression of CLU in melanoma cell lines in vitro. Anticancer Res., 26: 2707-2716.
Direct Link  |  
119:   Shannan, B., M. Seifert, K. Leskov, J. Willis and D.A. Boothmanet al ., 2006. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ., 13: 12-19.
PubMed  |  Direct Link  |  
120:   Shannan, B., Seifert, M., D.A. Boothman, W. Tilgen and J. Reichrath, 2007. Clusterin over-expression modulates proapoptotic and antiproliferative effects of 1, 25 (OH)2D3 in prostate cancer cells in vitro. J. Steroid Biochem. Mol. Biol., 103: 721-725.
CrossRef  |  
121:   Suzuki, M. and D.A. Boothman, 2008. Stress-induced premature senescence (SIPS)-influence of SIPS on radiotherapy. J. Radiat. Res., 49: 105-112.
Direct Link  |  
122:   Suzuki, M., E. Cataldo, G. Veneziano, B. Shankar, Y. Zou, J. Morales and D.A. Boothman, 2006. Secretory clusterin (sCLU) is a hallmark sensor of DNA damage, cell stress, and cellular senescence: Evidence for similar regulation of sCLU expression after cellular stress and replicative senescence. Int. Congr. Ser., 49: 105-112.
CrossRef  |  
123:   Tagliarino, C., J.J. Pink and D.A. Boothman, 2002. Calpains and apoptosis. Korean J. Biol. Sci., 5: 267-274.
124:   Tagliarino, C., J.J. Pink, G.R. Dubyak, A.L. Nieminen and D.A. Boothman, 2001. Calcium is a key signaling molecule in β-lapachone-mediated cell death. J. Biol. Chem., 276: 19150-19159.
Direct Link  |  
125:   Tagliarino, C., J.J. Pink, S. Wuerzberg-Davis and D.A. Boothman, 2003. μ-Calpain activation in β-lapachone-mediated apoptosis. Cancer Biol. Ther., 2: 141-152.
126:   Trougakos, I.P., M. Lourda, M.H. Antonelou, D. Kletsas and V.G. Gorgoulis et al., 2009. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clinical Cancer Res., 15: 48-59.
CrossRef  |  
127:   Trougakos, I.P., Y.J. Djeu, E.S. Gonos and D.A. Boothman, 2009. Advances and challenges in basic and translational research on clusterin. Cancer Res., 69: 403-406.
128:   Wagner, M.W., L.S. Li, J.C. Morales, C.L. Galindo, H.R. Garner, W.G. Bornmann and D.A. Boothman, 2008. Role of c-Abl kinase in DNA mismatch repair-dependent G2 cell cycle checkpoint arrest responses. J. Biol. Chem., 283: 21382-21393.
CrossRef  |  
129:   Wang, F., E. Blanco, H. Ai, D.A. Boothman and J. Gao, 2006. Modulating β-lapachone release from polymer millirods through cyclodextrin complexation. J. Pharm. Sci., 95: 2309-2319.
CrossRef  |  
130:   Wang, X., Y. Dong, Y. Zou, J. Pastor and M. Kuro-o et al., 2012. Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions. Proteome Sci., 9: 53-57.
CrossRef  |  Direct Link  |  
131:   Wu, K., D. Xie, Y. Zou, T. Zhang and R.C. Pong et al., 2013. The mechanism of DAB2IP in chemoresistance of prostate cancer cells. Clin Cancer Res., 19: 4740-4749.
CrossRef  |  PubMed  |  
132:   Wuerzberger, S.M., J.J. Pink, S.M. Planchon, K.L. Byers, W.G. Bornmann and D.A. Boothman, 1998. Induction of apoptosis in MCF-7:WS8 breast cancer cells by β-lapachone. Cancer Res., 58: 1876-1885.
Direct Link  |  
133:   Xie, D., C. Gore, J. Liu, R.C. Pong and R. Mason et al., 2010. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc. Natl. Acad. Sci., 107: 2485-2490.
CrossRef  |  PubMed  |  
134:   Yan, T., T.W. Davis, J.E. Schupp, H.S. Hwang and M.W. Wagner et al., 2001. Mismatch repair mediated a proficient G2 arrest and cdc2 phosphorylation following high-dose rate ionizing radiation. Cancer Res., 61: 8290-8297.
135:   Yang, C.R., C.W. van Patten, S.M. Planchon, S.M. Wuerzberger-Davis and T.W. Davis et al., 2000. Coordinate modulation of Sp1, NF-kappa B and p53 in confluent human malignant melanoma cells after ionizing radiation. FASEB J., 14: 379-390.
Direct Link  |  
136:   Yang, C.R., K. Leskov, K. Hosley-Eberlein, T. Criswell, J.J. Pink, T.J. Kinsella and D.A. Boothman, 2000. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc. Natl. Acad. Sci., USA., 97: 5907-5912.
CrossRef  |  
137:   Yang, C.R., S.Y. Yeh, K. Leskov, E. Odegaard and H.S. Hsu et al., 1999. Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Res., 27: 2165-2174.
Direct Link  |  
138:   Yu, H., Y. Zou, Y. Wang, X. Huang and G. Huang et al., 2011. Overcoming endosomal barrier by amphotericin B-loaded dual pH-Responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano, 5: 9246-9255.
CrossRef  |  PubMed  |  Direct Link  |