Dr. Amr Mohammed  Sadek
My Social Links

Dr. Amr Mohammed Sadek

Researcher
National Institute of Standards and Technology, U.S.A.


Highest Degree
Ph.D. in Theoretical Nuclear Physics from Fayoum University, Egypt

Share this Profile

Area of Interest:

Physics
100%
Nuclear Physics
62%
Physics Theories
90%
Applied Physics
75%
Radiation Effects
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Soliman, H.A., M.A. Hassan, E. Esmat, A.M. Sadek and A.M. Maghraby, 2017. Thermally enhanced TLD output: Impact on the dose response. Applied Radiat. Isotopes, 125: 60-65.
  2. Sadek, A.M., M.M. Hassan, E. Esmat and H.M. Eissa, 2017. A new approach to the analysis of thermoluminescence glow-curve of TLD-600 dosimeters following Am-241 Alpha particles irradiation. Radiat. Protect. Dosimetry, 10.1093/rpd/ncx105.
    CrossRef  |  Direct Link  |  
  3. Sadek, A.M., F. Khamis, G.S. Polymeris, E. Carinou and G. Kitis, 2017. Similarities and differences between two different types of the thermoluminescence dosimeters belonging to the LiF family. Phys. Status Solidi, Vol. 14. 10.1002/pssc.20160220.
    CrossRef  |  Direct Link  |  
  4. Sadek, A.M. and G. Kitis, 2017. A critical look at the kinetic parameter values used in simulating the thermoluminescence glow-curve. J. Luminescence, 183: 533-541.
  5. Farag, M.A., A.M. Sadek, H.A. Shousha, A.A. El-Hagg, M.R. Atta and G. Kitis, 2017. Radiation damage and sensitization effects on thermoluminescence of LiF: Mg, Ti (TLD-700). Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 407: 180-190.
    CrossRef  |  Direct Link  |  
  6. Hassan, G.M., E. Aboelezz, A.M. Sadek and M.A. Sharaf, 2016. Glow curve deconvolution of nano barium strontium sulfate and thermoluminescence trap centers behavior with gamma doses. J. Luminescence, 179: 616-621.
    CrossRef  |  Direct Link  |  
  7. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2015. Properties of the thermoluminescence glow peaks simulated by the interactive multiple‐trap system (IMTS) model. Phys. Status Solidi (B), 252: 721-729.
    CrossRef  |  Direct Link  |  
  8. Sadek, A.M., H.M. Eissa, A.M. Bash, E. Carinou, P. Askounis and G. Kitis, 2015. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model. Applied Radiat. Isotopes, 95: 214-222.
    CrossRef  |  Direct Link  |  
  9. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2014. Resolving the limitation of the peak fitting and peak shape methods in the determination of the activation energy of thermoluminescence glow peaks. J. Luminescence, 146: 418-432.
    CrossRef  |  Direct Link  |  
  10. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2014. Development of the peak fitting and peak shape methods to analyze the thermoluminescence glow-curves generated with exponential heating function. Nucl. Instrument Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 330: 103-107.
    CrossRef  |  Direct Link  |  
  11. Abo-Elmagd, M. and A.M. Sadek, 2014. Development of a model using the MATLAB System identification toolbox to estimate 222Rn equilibrium factor from CR-39 based passive measurements. J. Environ. Radioactivity, 138: 33-37.
    CrossRef  |  Direct Link  |  
  12. Sadek, A.M., 2013. Test of the accuracy of the computerized glow curve deconvolution algorithm for the analysis of thermoluminescence glow curves. Nucl. Instruments Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detectors Assoc. Equipment, 712: 56-61.
    CrossRef  |  Direct Link  |  
  13. Abd El-Hafez, A.I., M.N. Yasin and A.M. Sadek, 2011. GCAFIT-a new tool for glow curve analysis in thermoluminescence nanodosimetry. Nucl. Instruments Methods Phys. Res. Sect. A: Accelerat. Detectors Assoc. Equipment, 637: 158-163.
    CrossRef  |  Direct Link  |