Hi, I am Najib Mahdou, My LiveDNA is 212.536
 
   
  Home
 
 
 
Dr. Najib Mahdou
 
Highest Degree: Ph.D. in Commutative and Homological Algebra from University of Fez, Fez, Morocco
 
Institute: University of Fez, Fez, Morocco
 
Area of Interest: Mathematics
  •   Commutative Algebra
  •   Classical Homological Algebra
  •   Gorenstein Homological Algebra
  •   Associative Algebra
 
URL: http://livedna.org/212.536
 
My SELECTED Publications
1:   Almahdi, F.A.A. and N. Mahdou, 2011. On Armendariz-Like properties. Afr. Diaspora J. Math. New Ser., 11: 40-47.
Direct Link  |  
2:   Bakkari, C. and N. Mahdou, 2006. Gaussian polynomials and content ideal in pullbacks. Commun. Algebra, 34: 2727-2732.
CrossRef  |  Direct Link  |  
3:   Bakkari, C. and N. Mahdou, 2014. On weakly coherent rings. Rocky Mt. J. Math., 44: 743-752.
Direct Link  |  
4:   Bakkari, C., N. Mahdou and H. Mouanis, 2009. Prufer-like conditions in subrings retract and applications. Commun. Algebra, 37: 47-55.
CrossRef  |  Direct Link  |  
5:   Bakkari, C., S. Kabbaj and N. Mahdou, 2010. Trivial extensions defined by Prufer conditions. J. Pure Appl. Algebra, 214: 53-60.
CrossRef  |  Direct Link  |  
6:   Bennis, D. and N. Mahdou, 2007. Strongly gorenstein projective, injective and flat modules. J. Pure Applied Algebra, 210: 437-445.
CrossRef  |  Direct Link  |  
7:   Bennis, D. and N. Mahdou, 2009. Global gorenstein dimensions and cotorsion dimension of rings. Commun. Algebra, 37: 1709-1718.
8:   Bennis, D. and N. Mahdou, 2009. On (n, d)-perfect rings. Commutative Algebra Appl., 2009: 275-284.
Direct Link  |  
9:   Bennis, D. and N. Mahdou, 2009. On n-perfect rings and cotorsion dimension. J. Algebra Appl., 8: 181-190.
Direct Link  |  
10:   Bennis, D. and N. Mahdou, 2009. n-perfectness in pullbacks. Commutative Algebra Appl., 2009: 61-68.
Direct Link  |  
11:   Bennis, D. and N. Mahdou, 2010. First, second, and third change of rings theorems for Gorenstein homological dimensions. Commun. Algebra, 38: 3837-3850.
Direct Link  |  
12:   Cheniour, F. and N. Mahdou, 2013. When every flat ideal is finitely projective. Arabian J. Math., 2: 255-261.
Direct Link  |  
13:   Cheniour, F. and N. Mahdou, 2014. When every P-flat ideal is flat. Bull. Iran. Math. Soc., 40: 677-688.
Direct Link  |  
14:   Cheniour, F. and N. Mahdou, 2014. When every flat ideal is projective. Comment. Math. Univ. Carolin, 55: 1-7.
Direct Link  |  
15:   Cheniour, F. and N. Mahdou, 2015. On some flatness properties over commutative rings. Acta Math. Hungarica, 146: 142-152.
Direct Link  |  
16:   Cheniour, Fatima, and N. Mahdou, 2015. On rings over which every p-flat ideal is singly projective. Int. Electron. J. Algebra, 18: 46-56.
Direct Link  |  
17:   Chhiti, M., N. Mahdou and M. Tamekkante, 2015. Clean property in amalgamated algebras along an ideal. Hacettepe J. Math. Stat., 44: 41-49.
Direct Link  |  
18:   El Baghdadi, S., A. Jhilal and N. Mahdou, 2012. On FF-rings. J. Pure Appl. Algebra, 216: 71-76.
Direct Link  |  
19:   Ismaili, K.A. and N. Mahdou, 2015. Finite conductor property in amalgamated algebra along an ideal. J. Taibah Univ. Sci., 9: 332-339.
Direct Link  |  
20:   Ismaili, K.A. and N. Mahdou, 2016. On (n, d)-property in amalgamated algebra. Asian Eur. J. Math., .
Direct Link  |  
21:   Jhilal, A. and N. Mahdou, 2010. On strong n-perfect and (n, d)-perfect rings. Afr. Diaspora J. Math., 9: 1-7.
Direct Link  |  
22:   Kabbaj, S.E. and N. Mahdou, 2004. Trivial extensions defined by coherent-like conditions. Commun. Algebra, 32: 3937-3953.
23:   Kabbour, M. and M. Mahdou, 2014. Arithmetical property in amalgamated algebras along an ideal. Palestine J. Math., 3: 395-399.
Direct Link  |  
24:   Kabbour, M. and N. Mahdou, 2011. Amalgamation of rings defined by Bezout-like conditions. J. Algebra Appl., 10: 1343-1350.
Direct Link  |  
25:   Louartiti, K. and N. Mahdou, 2012. Transfer of MultiplicationLike Conditions in Amalgamated Algebra Along an Ideal. Afr. Diaspora J. Math. New Ser., 14: 119-125.
Direct Link  |  
26:   Louartiti, K. and N. Mahdou, 2015. Rings in which every homomorphic image satisfy (strong) property(A). Gulf J. Math., 8: 23-29.
Direct Link  |  
27:   Mahdou, C.B.N., 2009. On Gaussian polynomials and content ideal. Contrib. Algebra Geom., 50: 425-431.
Direct Link  |  
28:   Mahdou, N. and A.R. Hassani, 2012. On strong (A)-rings. Mediterr. J. Math., 9: 393-402.
Direct Link  |  
29:   Mahdou, N. and H. Mouanis, 2004. Some homological properties of subring retract and applications to fixed rings. Commun. Algebra, 32: 1823-1834.
CrossRef  |  Direct Link  |  
30:   Mahdou, N. and H. Mouanis, 2015. On Steinitz-like conditions. J. Taibah Univ. Sci., 9: 340-345.
Direct Link  |  
31:   Mahdou, N. and K. Ouarghi, 2009. Gorenstein dimensions in trivial ring extensions. Commutative Algebra Appl., 2009: 291-299.
Direct Link  |  
32:   Mahdou, N. and K. Ouarghi, 2013. Rings over which all (finitely generated strongly) Gorenstein projective modules are projec- tive. Int. J. Open Prob. Comput. Sci. Math., 6: 62-72.
33:   Mahdou, N. and M. Tamekkante, 2010. IF-dimension of Modules. Commun. Math. Appl., 1: 99-104.
Direct Link  |  
34:   Mahdou, N. and M. Tamekkante, 2011. Gorenstein global dimension of an amalgamated duplication of a coherent ring along an ideal. Mediterr. J. Math., 8: 293-305.
Direct Link  |  
35:   Mahdou, N. and M. Tamekkante, 2011. On (strongly) Gorenstein (semi) hereditary rings. Arabian J. Sci. Eng., 36: 431-440.
Direct Link  |  
36:   Mahdou, N. and M. Tamekkante, 2011. On an amalgamated duplication of a ring along an ideal which are quasi-Frobenius. Contrib. Algebra Geom., 52: 343-347.
Direct Link  |  
37:   Mahdou, N. and M. Tamekkante, 2011. Right Gorenstein global dimension of an (almost) excellent extension. Asian Eur. J. Math., 4: 109-115.
Direct Link  |  
38:   Mahdou, N. and M. Tamekkante, 2011. Strongly Gorenstein flat modules and dimensions. Chin. Ann. Math. Ser. B, 32: 533-548.
Direct Link  |  
39:   Mahdou, N. and M. Tamekkante, 2011. The orthogonal complement relative to the functor extension of the class of all Gorenstein flat modules. Adv. Pure Appl. Math., 2: 133-145.
Direct Link  |  
40:   Mahdou, N. and M. Tamekkante, 2013. On (weak) Gorenstein global dimensions. Acta Math. Univ. Comenianae, 82: 285-296.
Direct Link  |  
41:   Mahdou, N. and M. Tamekkante, 2015. On Gorenstein global dimension of tensor product of algebras over a field. Gulf J. Math., 8: 30-37.
Direct Link  |  
42:   Mahdou, N. and M. Zennayi, 2015. On adequate rings. J. Taibah Univ. Sci., 9: 320-325.
Direct Link  |  
43:   Mahdou, N. and M. Zennayi, 2015. Power of maximal ideal. Palestine J. Math., 4: 251-257.
Direct Link  |  
44:   Mahdou, N. and M.A.S. Moutui, 2015. Amalgamated algebras along an ideal defined by Gaussian condition. J. Taibah Univ. Sci., 9: 373-379.
Direct Link  |  
45:   Mahdou, N. and M.A.S. Moutui, 2015. fqp-Property in amalgamated algebras along an ideal. Asian Eur. J. Math., .
Direct Link  |  
46:   Mahdou, N., 2001. On Costa`s conjecture. Commun. Algebra, 29: 2775-2785.
Direct Link  |  
47:   Mahdou, N., 2002. On the Clifford algebra of a diagonal binary and cubic form. Arabian J. Sci. Eng., 27: 109-114.
48:   Mahdou, N., 2003. On (n, d)-Krull rings. Commun. Algebra, 31: 1139-1146.
Direct Link  |  
49:   Mahdou, N., 2005. On 2-von neumann regular rings. Commun. Algebra, 33: 3489-3496.
CrossRef  |  Direct Link  |  
50:   Mahdou, N., 2005. On weakly finite conductor rings. Commun. Algebra, 32: 4027-4036.
CrossRef  |  Direct Link  |  
51:   Mahdou, N., 2006. n-flat modules and n-von neumann regular rings. Int. J. Mathematics Mathematical Sci., 2006: 1-6.
Direct Link  |  
52:   Mahdou, N., 2010. Sufficient Condition to Resolve Costa`s First Conjecture. Commun. Algebra, 38: 1066-1074.
Direct Link  |  
53:   Mahdou, N., A. Mimouni and H. Mouanis, 2006. The (n,d)-krull property over domains arising from pullbacks. Commun. Algebra, 34: 2281-2286.
CrossRef  |  Direct Link  |  
54:   Mahdou, N., A. Mimouni and M.A. Salam Moutui, 2015. On Almost Valuation and Almost Bezout Rings. Commun. Algebra, 43: 297-308.
Direct Link  |  
55:   Mahdou, N., M. Tamekkante and S. Yassemi, 2011. On (strongly) Gorenstein von Neumann regular rings. Commun. Algebra, 39: 3242-3252.
Direct Link  |  
56:   Mahdou, N., M. Tamekkante and S. Yassemi, 2013. Coherent power series ring and weak Gorenstein global dimension. Glasgow Math. J., 55: 533-536.
Direct Link  |  
57:   Mimouni, A., M. Kabbour and N. Mahdou, 2013. Trivial ring extensions defined by arithmetical-like properties. Commun. Algebra, 41: 4534-4548.
Direct Link  |