Hi, I am Sandrine Silvente-Poirot, My LiveDNA is 33.6086
 
   
  Home
 
 
 
Dr. Sandrine Silvente-Poirot
 
Highest Degree: Ph.D. in Molecular Pharmacology from Inserm-University of Toulouse III, France
 
Institute: National Center of Scientific Research, France
 
Area of Interest: Pharmacology and Toxicology
  •   Pharmacology
  •   Experimental Oncology
  •   Metabolism
  •   Molecular Imaging
 
URL: http://livedna.org/33.6086
 
My SELECTED Publications
1:   Amigues, E., J. Schulz, M. Szlosek-Pinaud, P. Fernandez and S. Silvente-Poirot et al., 2012. [18F]Si-RiboRGD: From design and synthesis to the imaging of αvβ3 integrins in melanoma tumors. Chem. Plus Chem., 77: 345-349.
CrossRef  |  Direct Link  |  
2:   Brillouet, S., O. Caselles, L.O. Dierickx, B. Mestre and J. Nalis et al., 2007. Preclinical evaluation of new radioligand of cholecystokinin/gastrin receptors in endocrine tumors xenograft nude mice. Nucl. Inst. Meth. Phys. Res. Sect. A: Accelerat. Spectromet. Detect. Assoc. Equip., 571: 160-164.
CrossRef  |  Direct Link  |  
3:   Brillouet, S., S. Dorbes, F. Courbon, C. Picard and J.P. Delord et al., 2010. Development of a new radioligand for cholecystokinin receptor subtype 2 scintigraphy: From molecular modeling to In vivo evaluation. Bioorg. Med. Chem., 18: 5400-5412.
CrossRef  |  
4:   De Medina, P., B. Payre, N. Boubekeur, J. Bertrand-Michel and F. Terce, S. Silvente-Poirot and M. Poirot, 2009. Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ., 16: 1372-1384.
CrossRef  |  PubMed  |  Direct Link  |  
5:   De Medina, P., B.L. Payre, J. Bernad, I. Bosser and B. Pipy et al., 2004. Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells. J. Pharmacol. Exp. Ther., 308: 1165-1173.
CrossRef  |  PubMed  |  Direct Link  |  
6:   De Medina, P., M. Paillasse, B. Payre, S. Silvente-Poirot and M. Poirot, 2009. Synthesis of new alkylaminooxysterols with potent cell differentiating activities: Identification of leads for the treatment of cancer and neurodegenerative diseases. J. Med. Chem., 52: 7765-7777.
CrossRef  |  PubMed  |  Direct Link  |  
7:   De Medina, P., M. Paillasse, G. Segala, M. Voisin and L. Mhamdi et al., 2013. Discovery of Dendrogenin A: A new cholesterol metabolite that triggers antitumor activities. Nat. Commun., Vol., 4 .
8:   De Medina, P., M.R. Paillasse, G. Segala, F. Khallouki and S. Brillouet et al., 2011. Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem. Phys. Lipids, 164: 432-437.
CrossRef  |  PubMed  |  Direct Link  |  
9:   De Medina, P., M.R. Paillasse, G. Segala, T. al Saati and J. Boyes et al., 2012. Technical note: Hapten synthesis, antibody production and development of an enzyme-linked immunosorbent assay for detection of the natural steroidal alkaloid Dendrogenin A. Biochimie, 95: 482-488.
CrossRef  |  PubMed  |  Direct Link  |  
10:   De Medina, P., M.R. Paillasse, S. Segala, M. Poirot and S. Silvente-Poirot, 2010. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc. Natl. Acad. Sci. USA., 107: 13520-13525.
CrossRef  |  PubMed  |  Direct Link  |  
11:   De Medina, P., N. Boubekeur, P. Balaguer, G. Favre, S. Silvente-Poirot and M. Poirot, 2006. The prototypical inhibitor of cholesterol esterification, Sah 58-035 [3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide], is an agonist of estrogen receptors. J. Pharmacol. Exp. Ther., 319: 139-149.
CrossRef  |  PubMed  |  Direct Link  |  
12:   De Medina, P., S. Genovese, M.R. Paillasse, M. Mazaheri and S. Caze-Subra et al., 2010. Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors. Mol. Pharmacol., 78: 827-836.
CrossRef  |  PubMed  |  Direct Link  |  
13:   De Medina, P., S. Silvente-Poirot and M. Poirot, 2009. Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy, 5: 1066-1067.
CrossRef  |  PubMed  |  Direct Link  |  
14:   Dorbes, S., B. Mestre-Voegtle, Y. Coulais, C. Picard, S. Silvente-Poirot, M. Poirot and E. Benoist, 2010. Synthesis, characterization and In vitro evaluation of new oxorhenium- and oxotechnetium-CCK4 derivatives as molecular imaging agents for CCK2-receptor targeting. Eur. J. Med. Chem., 45: 423-429.
CrossRef  |  PubMed  |  Direct Link  |  
15:   Dufresne, M., S. Poirot, J. Jimenez, J.C. Cuber, N. Vaysse and D. Fourmy, 1990. Immune recognition of affinity-labelled cholecystokinin receptor. Eur. J. Biochem., 191: 141-146.
CrossRef  |  PubMed  |  Direct Link  |  
16:   Dufresne, M., S. Poirot, J. Jimenez, N. Vaysse and D. Fourmy, 1992. Purification of A-subtype pancreatic cholecystokinin receptor by immunoaffinity chromatography. Biochimie, 74: 149-151.
CrossRef  |  PubMed  |  Direct Link  |  
17:   Escrieut, C., V. Gigoux, , E. Archer, S. Verrier and B. Maigret et al., 2002. The biologically crucial C terminus of cholecystokinin and the non-peptide agonist SR-146,131 share a common binding site in the human CCK1 receptor. Evidence for a crucial role of Met-121 in the activation process. J. Biol. Chem., 277: 7546-7555.
CrossRef  |  PubMed  |  Direct Link  |  
18:   Fourmy, D., C. Escrieut, E. Archer, C. Gales and V. Gigoux et al., 2002. Structure of cholecystokinin receptor binding sites and mechanism of activation/inactivation by agonists/antagonists. Pharmacol. Toxicol., 91: 313-320.
CrossRef  |  PubMed  |  Direct Link  |  
19:   Fourmy, D., P. Lopez, S. Poirot, J. Jimenez and M. Dufresne et al., 1989. A new probe for affinity labelling pancreatic cholecystokinin receptor with minor modification of its structure. Eur. J. Biochem., 185: 397-403.
CrossRef  |  Direct Link  |  
20:   Gales, C., A. Kowalski-Chauvel, M.N. Dufour, C. Seva and L. Moroder et al., 2000. Mutation of Asn-391 within the conserved NPXXY motif of the cholecystokinin B receptor abolishes Gq protein activation without affecting its association with the receptor. J. Biol. Chem., 275: 17321-17327.
CrossRef  |  PubMed  |  Direct Link  |  
21:   Gales, C., D. Sanchez, M. Poirot, S. Pyronnet and L. Buscail et al., 2003. High tumorigenic potential of a constitutively active mutant of the cholecystokinin 2 receptor. Oncogene, 22: 6081-6089.
CrossRef  |  PubMed  |  Direct Link  |  
22:   Gales, C., M. Poirot, J. Taillefer, B. Maigret and J. Martinez et al., 2003. Identification of tyrosine 189 and asparagine 358 of the cholecystokinin 2 receptor in direct interaction with the crucial C-terminal amide of cholecystokinin by molecular modeling, site-directed mutagenesis and structure/affinity studies. Mol. Pharmacol., 63: 973-982.
CrossRef  |  PubMed  |  Direct Link  |  
23:   Gigoux, V., B. Maigret, C. Escrieut, S. Silvente-Poirot and M. Bouisson et al., 1999. Arginine 197 of the cholecystokinin-A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin. Protein Sci., 8: 2347-2354.
CrossRef  |  PubMed  |  Direct Link  |  
24:   Gigoux, V., C. Escrieut, J.A. Fehrentz, S. Poirot and B. Maigret et al., 1999. Arginine 336 and asparagine 333 of the human cholecystokinin-A receptor binding site interact with the penultimate aspartic acid and the C-terminal amide of cholecystokinin. J. Biol. Chem., 274: 20457-20464.
CrossRef  |  PubMed  |  Direct Link  |  
25:   Gigoux, V., C. Escrieut, S. Silvente-Poirot, B. Maigret and L. Gouilleux et al., 1998. Met-195 of the cholecystokinin-A receptor interacts with the sulfated tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state. J. Biol. Chem., 273: 14380-14386.
CrossRef  |  PubMed  |  Direct Link  |  
26:   Hadjiivanova, C., M. Dufresne, S. Poirot, P. Sozzani, N. Vaysse, L. Moroder and D. Fourmy, 1992. Pharmacological and biochemical characterization of cholecystokinin/gastrin receptors in developing rat pancreas. Eur. J. Biochem., 204: 273-279.
CrossRef  |  PubMed  |  Direct Link  |  
27:   Jimenez, J., M. Dufresne, S. Poirot, N. Vaysse and D. Fourmy, 1990. Electric properties of photoaffinity-labelled pancreatic A-subtype cholecystokinin. J. Chromatogr. A, 511: 333-339.
CrossRef  |  PubMed  |  Direct Link  |  
28:   Kedjouar, B., P. De Medina, M. Oulad-Abdelghani, B. Payre and S. Silvente-Poirot et al., 2004. Molecular characterization of the microsomal tamoxifen binding site. J. Biol. Chem., 279: 34048-34061.
CrossRef  |  PubMed  |  Direct Link  |  
29:   Loidl, G., H.J. Musiol, N. Budisa, R. Huber, S. Poirot, D. Fourmy and L. Moroder, 2000. Synthesis of beta-(1-azulenyl)-L-alanine as a potential blue-colored fluorescent tryptophan analog and its use in peptide synthesis. J. Pept. Sci., 6: 139-144.
CrossRef  |  PubMed  |  Direct Link  |  
30:   Paillasse, M.R., C. Deraeve, P. de Medina, L. Mhamdi, G. Favre, M. Poirot and S. Silvente-Poirot, 2006. Insights into the cholecystokinin 2 receptor binding site and processes of activation. Mol. Pharmacol., 70: 1935-1945.
CrossRef  |  PubMed  |  Direct Link  |  
31:   Paillasse, M.R., N. Saffon, H. Gornitzka, S. Silvente-Poirot, M. Poirot and P. de Medina, 2012. Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles. J. Lipid Res., 53: 718-725.
CrossRef  |  PubMed  |  Direct Link  |  
32:   Paillasse, M.R., P. de Medina, G. Amouroux, L. Mhamdi, M. Poirot and S. Silvente-Poirot, 2009. Signaling through cholesterol esterification: A new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J. Lipid Res., 50: 2203-2211.
CrossRef  |  PubMed  |  Direct Link  |  
33:   Payre, B., P. de Medina, N. Boubekeur, L. Mhamdi and J. Bertrand-Michel et al., 2008. Microsomal antiestrogen-binding site ligands induce growth control and differentiation of human breast cancer cells through the modulation of cholesterol metabolism. Mol. Cancer Ther., 7: 3707-3717.
PubMed  |  Direct Link  |  
34:   Pohl, M., S. Silvente-Poirot, J.R. Pisegna, N.I. Tarasova and S.A. Wank, 1997. Ligand-induced internalization of cholecystokinin receptors. Demonstration of the importance of the carboxyl terminus for ligand-induced internalization of the rat cholecystokinin type B receptor but not the type A receptor. J. Biol. Chem., 272: 18179-18184.
CrossRef  |  PubMed  |  Direct Link  |  
35:   Poirot, M. and S. Silvente-Poirot, 2012. Cholesterol-5,6-epoxides: Chemistry, biochemistry, metabolic fate and cancer. Biochimie, 95: 622-631.
CrossRef  |  PubMed  |  Direct Link  |  
36:   Poirot, M. and S. Silvente-Poirot, 2013. Oxysterols and related sterols: Implication in physiopathology and pharmacology. Biochem. Pharmacol., 86: 1-2.
37:   Poirot, M., S. Silvente-Poirot and R.R. Weichselbaum, 2012. Cholesterol metabolism and resistance to tamoxifen in breast cancers. Curr. Opin. Pharmacol., 12: 683-689.
CrossRef  |  PubMed  |  Direct Link  |  
38:   Poirot, S.S., C. Escrieut, M. Dufresne, J. Martinez, M. Bouisson, N. Vaysse and D. Fourmy, 1994. Photoaffinity labeling of rat pancreatic cholecystokinin type A receptor antagonist binding sites demonstrates the presence of a truncated cholecystokinin type A receptor. Mol. Pharmacol., 45: 599-607.
PubMed  |  Direct Link  |  
39:   Poirot, S.S., C. Hadjiivanova, C. Escrieut, M. Dufresne, J. Martinez, N. Vaysse and D. Fourmy, 1993. Study of the states and populations of the rat pancreatic cholecystokinin receptor using the full peptide antagonist JMV 179. Eur. J. Biochem., 212: 529-538.
CrossRef  |  PubMed  |  Direct Link  |  
40:   Poirot, S.S., M. Dufresne, J. Jimenez, N. Vaysse and D. Fourmy, 1992. Biochemical characterization of a subtype pancreatic cholecystokinin receptor and of its agonist binding domain. J. Recept. Res., 12: 233-253.
CrossRef  |  Direct Link  |  
41:   Poosti, R., L. Di Malta, D. Gagne, J.C. Galleyrand and C. Escrieut et al., 2000. The third intracellular loop of the rat and mouse cholecystokinin-A receptors is responsible for different patterns of gene activation. Mol. Pharmacol., 58: 1381-1388.
CrossRef  |  PubMed  |  Direct Link  |  
42:   Record, M., C. Subra, S. Silvente-Poirot and M. Poirot, 2011. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol., 81: 1171-1182.
Direct Link  |  
43:   Record, M., K. Carayon, M. Poirot and S. Silvente-Poirot, 2014. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica Biophysica Acta (BBA)-Mol. Cell Biol. Lipids, 1841: 108-120.
CrossRef  |  PubMed  |  Direct Link  |  
44:   Record, M., M. Poirot and S. Silvente-Poirot, 2014. Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie, 96: 67-74.
CrossRef  |  Direct Link  |  
45:   Segala, G., P. de Medina, L. Iuliano, C. Zerbinati and M.R. Paillasse et al., 2013. 5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of Tamoxifen in breast cancer cells. Biochem. Pharmacol., 86: 175-189.
CrossRef  |  PubMed  |  Direct Link  |  
46:   Silvente-Poirot, S. and M. Poirot, 2012. Cholesterol epoxide hydrolase and cancer. Curr. Opin. Pharmacol., 12: 696-703.
CrossRef  |  PubMed  |  Direct Link  |  
47:   Silvente-Poirot, S. and M. Poirot, 2012. Cholesterol metabolism and cancer: The good, the bad and the ugly. Curr. Opin. Pharmacol., 12: 673-676.
CrossRef  |  PubMed  |  Direct Link  |  
48:   Silvente-Poirot, S. and S.A. Wank, 1996. A segment of five amino acids in the second extracellular loop of the cholecystokinin-B receptor is essential for selectivity of the peptide agonist gastrin. J. Biol. Chem., 271: 14698-14706.
CrossRef  |  PubMed  |  Direct Link  |  
49:   Silvente-Poirot, S., C. Escrieut and S.A. Wank, 1998. Role of the extracellular domains of the cholecystokinin receptor in agonist binding. Mol. Pharmacol., 54: 364-371.
CrossRef  |  PubMed  |  Direct Link  |  
50:   Silvente-Poirot, S., C. Escrieut, C. Gales, J.A. Fehrentz and A. Escherich et al., 1999. Evidence for a direct interaction between the penultimate aspartic acid of cholecystokinin and histidine 207, located in the second extracellular loop of the cholecystokinin B receptor. J. Biol. Chem., 274: 23191-23197.
CrossRef  |  PubMed  |  Direct Link  |  
51:   Silvente-Poirot, S., M. Dufresne, N. Vaysse and D. Fourmy, 1993. The peripheral cholecystokinin receptors. Eur. J. Biochem., 215: 513-529.
CrossRef  |  Direct Link  |  
52:   Sola, B., M. Poirot, P. de Medina, S. Bustany, V. Marsaud, S. Silvente-Poirot and J.M. Renoir, 2013. Antiestrogen-binding site ligands induce autophagy in myeloma cells that proceeds through alteration of cholesterol metabolism. Oncotarget, 4: 911-922.
PubMed  |  Direct Link  |  
53:   Subra, C., D. Grand, K. Laulagnier, A. Stella and G. Lambeau et al., 2010. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res., 51: 2105-2120.
CrossRef  |  PubMed  |  Direct Link  |