Hi, I am Mikako Ogawa, My LiveDNA is 81.6364
 
   
  Home
 
 
 
Dr. Mikako Ogawa
 
Highest Degree: Ph.D. in Pharmaceutical Sciences from Kyoto University, Japan
 
Institute: Hamamatsu University School of Medicine, Japan
 
Area of Interest: Pharmacology and Toxicology
  •   Nuclear Imaging
  •   Central Nicotinic Acetylcholine Receptor Imaging
  •   Atherosclerotic Vulnerable Plaque Imaging
  •   Optical Imaging
 
URL: http://livedna.org/81.6364
 
My SELECTED Publications
1:   Alford, R., H.M. Simpson, J. Duberman, G.C. Hill and M. Ogawa et al., 2009. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging, 8: 341-354.
Direct Link  |  
2:   Alford, R., M. Ogawa, M. Hassan., A.H. Gandjbakhche, P.L. Choyke and H. Kobayashi, 2010. Fluorescence lifetime imaging of activatable target specific molecular probes. Contrast Media Mol. Imag., 5: 1-8.
CrossRef  |  Direct Link  |  
3:   Alford, R., M. Ogawa, P.L. Choyke, and H. Kobayashi, 2009. Molecular probes for the in vivo imaging of cancer. Mol. Biosyst., 5: 1279-1291.
CrossRef  |  Direct Link  |  
4:   Bumb, A., C.A.S. Regino, M.R. Perkins, M. Bernardo and M. Ogawa et al., 2010. Preparation and characterization of a magnetic and optical dual-modality molecular probe. Nanotechnology, vol, 21: 175704 10.1088/0957-4484/21/17/175704.
CrossRef  |  Direct Link  |  
5:   Fuchigami, T., H. Yamaguchi, M. Ogawa, L. Biao, M. Nakayama, M. Haratake and Y. Magata, 2010. Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorg.Med. Chem., 18: 7497-7506.
CrossRef  |  Direct Link  |  
6:   Fuchigami, T., T. Haradahira, N. Fujimoto, T. Okauchi and J. Maeda, et al., 2008. Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel Nucl. Med. Biol., 35: 203-212.
CrossRef  |  Direct Link  |  
7:   Fuchigami, T., T. Haradahira, N. Fujimoto, Y. Nojiri and T. Mukai et al., 2009. Development of N-[11C]methylamino 4-hydroxy-2(1H)-quinolone derivatives as PET radioligands for the glycine-binding site of NMDA receptors. Bioorg. Med. Chem., 17: 5665-5675.
CrossRef  |  Direct Link  |  
8:   Hosokawa, R., N. Kambara, M. Ohba, T. Mukai and M. Ogawa et al., 2006. A catheter-based intravascular radiation detector of vulnerable plaques. J. Nucl. Med., 47: 863-867.
Direct Link  |  
9:   Iida, Y., M. Ogawa, M. Ueda, A. Tominaga and H. Kawashima et al., 2004. Evaluation of 5-11C-methyl-A-85380 as an imaging agent for PET investigations of brain nicotinic acetylcholine receptors. J. Nucl. Med., 45: 878-884.
Direct Link  |  
10:   Ishino, S., M. Ogawa, I. Mori, S. Nishimura, S. Ikeda, T. Sugita, T. Oikawa, T. Horiguchi and Y. Magata, 2013. F-FDG PET and intravascular ultrasonography (IVUS) images compared with histology of atherosclerotic plaques: F-FDG accumulates in foamy macrophages. Eur. J. Nucl. Med. Mol. Imaging., (in press) .
11:   Ishino, S., T. Mukai, N. Kume, D. Asano and M. Ogawa et al., 2007. Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability--analysis in hypercholesterolemic rabbits. Atherosclerosis., 195: 48-56.
CrossRef  |  Direct Link  |  
12:   Ishino, S., T. Mukai, Y. Kuge, N. Kume and M. Ogawa et al., 2008. Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque. J. Nucl. Med., 49: 1677-1685.
CrossRef  |  Direct Link  |  
13:   Kiyono, Y., N. Kanegawa, H. Kawashima, Y. Iida and T. Kinoshita et al., 2002. Age-related changes of myocardial norepinephrine transporter density in rats: implications for differential cardiac accumulation of MIBG in aging. Nucl. Med. Biol., 29: 679-684.
Direct Link  |  
14:   Kiyono, Y., Y. Iida, H. Kawashima, M. Ogawa, N. Tamaki, H. Nishimura and H. Saji, 2002. Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. J. Nucl. Med. Mol. Imaging., 29: 999-1005.
CrossRef  |  Direct Link  |  
15:   Kobayashi, H., M. Ogawa, N. Kosaka, P.L. Choyke and Y. Urano, 2009. Multicolor imaging of lymphatic function with two nanomaterials: Quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine, 4: 411-419.
CrossRef  |  Direct Link  |  
16:   Kobayashi, H., M. Ogawa, R. Alford, P.L. Choyke and Y. Urano, 2009. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 110: 2620-2640.
CrossRef  |  Direct Link  |  
17:   Kobayashi, H., M.R. Longmire, M. Ogawa and P.L. Choyke, 2011. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev., 40: 4626-4648.
CrossRef  |  Direct Link  |  
18:   Kobayashi, H., M.R. Longmire, M. Ogawa, P.L. Choyke and S. Kawamoto, 2010. Multiplexed imaging in cancer diagnosis: Applications and future advances. Lancet Oncol., 11: 589-595.
CrossRef  |  Direct Link  |  
19:   Kojima, C., B. Turkbey, M. Ogawa, M. Bernardo and C.A. Regino et al., 2011. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics. Nanomedicine, 7: 1001-1008.
CrossRef  |  Direct Link  |  
20:   Kojima, C., T. Suehiro, K. Watanabe, M. Ogawa and A. Fukuhara et al., 2013. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater, 9: 5673-5680.
CrossRef  |  Direct Link  |  
21:   Kojima, C., Y. Umeda, M. Ogawa, A. Harada, Y. Magata, and K. Kono, 2010. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology, vol, 21: 245104 10.1088/0957-4484/21/24/245104.
CrossRef  |  Direct Link  |  
22:   Kosaka, N., M. Ogawa, D.S. Paik, C.H. Paik, P.L. Choyke and H. Kobayashi, 2010. Semiquantitative assessment of the microdistribution of fluorescence-labeled monoclonal antibody in small peritoneal disseminations of ovarian cancer. Cancer Sci., 101: 820-825.
CrossRef  |  Direct Link  |  
23:   Kosaka, N., M. Ogawa, M.R. Longmire, P.L. Choyke and H. Kobayashi, 2009. Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer. J. Biomed. Opt., Vol, 14: 014023 10.1117/1.3083449.
CrossRef  |  Direct Link  |  
24:   Kosaka, N., M. Ogawa, P.L. Choyke, N. Karassina and C. Corona et al., 2009. In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands. Biocon. Chem., 20: 1367-1374.
CrossRef  |  Direct Link  |  
25:   Kosaka, N., M. Ogawa, P.L. Choyke, and H. Kobayashi, 2009. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol., 5: 1501-1511.
Direct Link  |  
26:   Kosaka, N., Ogawa, M., N. Sato, P.L. Choyke and H. Kobayashi, 2009. In vivo real-time, multicolor, quantum dot lymphatic imaging. J. Invest. Dermatol., 129: 2818-2822.
CrossRef  |  Direct Link  |  
27:   Kudomi, N., C. Eunjoo, S. Yamamoto, H. Watabe and M.K. Kyeong et al., 2003. Development of a GSO detector assembly for a continuous blood sampling system. IEEE Trans. Nucl. Sci., 50: 70-73.
CrossRef  |  Direct Link  |  
28:   Kurabe, N., T. Hayasaka, M. Ogawa, N. Masaki and Y. Ide et al., 2013. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci., 104: 1295-1302.
CrossRef  |  Direct Link  |  
29:   Liu, J., M. Ogawa, T. Sakai, M. Takashima, S. Okazaki and Y. Magata, 2013. Differentiation of tumor sensitivity to photodynamic therapy and early evaluation of treatment effect by nuclear medicine techniques. Ann. Nucl. Med., 27: 669-675.
CrossRef  |  Direct Link  |  
30:   Longmire, M., N. Kosaka, M. Ogawa, P.L. Choyke and H. Kobayashi, 2009. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer. Cancer Sci., 100: 1099-1104.
CrossRef  |  Direct Link  |  
31:   Longmire, M.R., M. Ogawa, P.L. Choyke and H. Kobayashi, 2013. Dendrimers as high relaxivity MR contrast agents. Wiley Interd. Rev. Nanomed Nanobiotechnol. in press. 10.1002/wnan.1250.
CrossRef  |  Direct Link  |  
32:   Longmire, M.R., M. Ogawa, Y. Hama, N. Kosaka, C.A. Regino, P.L. Choyke and H. Kobayashi 2008. Determination of optimal rhodamine fluorophore for in vivo optical imaging. Bioconug. Chem. 19: 1735-1742.
CrossRef  |  Direct Link  |  
33:   Longmire, M.R., Ogawa, M., P.L. Choyke and H. Kobayashi, 2011. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug. Chem., 22: 993-1000.
CrossRef  |  Direct Link  |  
34:   Lucarelli, R.T., M. Ogawa, N. Kosaka, B. Turkbey, H. Kobayashi, and P.L. Choyke, 2009. New approaches to lymphatic imaging. Lymphat. Res. Biol., 7: 205-214.
Direct Link  |  
35:   Magata, Y., T. Temma, H. Iida, M. Ogawa and T. Mukai et al., 2003. Development of injectable O-15 oxygen and estimation of rat OEF. J. Cereb. Blood Flow Metab., 23: 671-676.
CrossRef  |  Direct Link  |  
36:   Mitsunaga, M., M. Ogawa, N. Kosaka, L.T. Rosenblum, P.L. Choyke and H. Kobayashi, 2011. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med., 17 : 1685-1691.
CrossRef  |  Direct Link  |  
37:   Mukai, T., R. Nohara, M. Ogawa, S. Ishino and N. Kambara et al., 2004. A catheter-based radiation detector for endovascular detection of atheromatous plaques. Eur. J. Nucl. Med. Mol. Imaging., 31: 1299-1303.
CrossRef  |  Direct Link  |  
38:   Ogawa, M., C.A. Regino, B. Marcelino, M. Williams and N. Kosaka et al., 2010. New nanosized biocompatible MR contrast agents based on lysine-dendri-graft macromolecules. Bioconjug. Chem., 21: 955-960.
CrossRef  |  Direct Link  |  
39:   Ogawa, M., C.A. Regino, J. Seidel, M.V. Green and W. Xi et al., 2009. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Biocon. Chem., 20: 2177-2184.
CrossRef  |  Direct Link  |  
40:   Ogawa, M., C.A. Regino, P.L. Choyke and H. Kobayashi, 2009. In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol. Cancer Ther., 8: 232-239.
CrossRef  |  Direct Link  |  
41:   Ogawa, M., H. Tsukada, K. Hatano, Y. Ouchi, H. Saji, and Y. Magata 2009. Central in vivo nicotinic acetylcholine receptor imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Biol. Pharm. Bull., 32: 337-340.
CrossRef  |  Direct Link  |  
42:   Ogawa, M., H. Watabe, N. Teramoto, Y. Miyake and T. Hayashi et al., 2005. Understanding of cerebral energy metabolism by dynamic living brain slice imaging system with [18F]FDG. Neurosci. Res., 52: 357-361.
CrossRef  |  Direct Link  |  
43:   Ogawa, M., K. Hatano, S. Oishi, Y. Kawasumi, N. Fujii et al., 2003. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo alpha(v)beta3 integrin related tumor imaging. Nucl. Med. Biol., 30: 1-9.
Direct Link  |  
44:   Ogawa, M., K. Hatano, Y. Kawasumi, J. Wichmann and K. Ito, 2001. Synthesis and in vivo evaluation of [11C]methyl-Ro 64-6198 as an ORL1 receptor imaging agent. Nucl. Med. Biol., 28: 941-947.
Direct Link  |  
45:   Ogawa, M., K. Hatano, Y. Kawasumi, K. Ishiwata, K. Kawamura, S. Ozaki and K. Ito, 2003. Synthesis and evaluation of 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-[11C]ethyl- 1,3-dihydro-2H-benzimidazol-2-one as a brain ORL1 receptor imaging agent for positron emission tomography. Nucl. Med. Biol., 30: 51-59.
Direct Link  |  
46:   Ogawa, M., Kosaka, N., P.L. Choyke and H. Kobayashi, 2009. Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer. Biocon. Chem., 20: 147-154.
CrossRef  |  Direct Link  |  
47:   Ogawa, M., N. Kosaka, C.A. Regino, M. Mitsunaga, P.L. Choyke and H. Kobayashi, 2010. High sensitivity detection of cancer in vivo using a dual-controlled activation fluorescent imaging probe based on H-dimer formation and pH activation. Mol. Biosyst., 6: 888-893.
CrossRef  |  Direct Link  |  
48:   Ogawa, M., N. Kosaka, M.R. Longmire, Y. Urano, P.L. Choyke and H. Kobayashi, 2009. Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol. Pharm., 6: 386-395.
CrossRef  |  Direct Link  |  
49:   Ogawa, M., N. Kosaka, P.L. Choyke and H. Kobayashi, 2009. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res., 69: 1268-1272.
Direct Link  |  
50:   Ogawa, M., N. Kosaka, P.L. Choyke and H. Kobayashi, 2009. H-type dimer formation of fluorophores: A mechanism for activatable, in vivo optical molecular imaging. ACS Chem. Biol., 4: 535-546.
CrossRef  |  Direct Link  |  
51:   Ogawa, M., R. Tatsumi, M. Fujio, J. Katayama. and Y. Magata, 2006. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor alpha7 subtype imaging agent. Nucl. Med. Biol., 33: 311-316.
CrossRef  |  Direct Link  |  
52:   Ogawa, M., S. Ishino, T. Mukai, D. Asano, and N. Teramoto et al., 2004. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J. Nucl. Med., 45: 1245-1250.
Direct Link  |  
53:   Ogawa, M., S. Nakamura, Y. Saito, M. Kosugi and Y. Magata, 2012. What Can Be Seen by 18F-FDG PET in Atherosclerosis Imaging? The Effect of Foam Cell Formation on 18F-FDG Uptake to Macrophages In Vitro. J. Nucl. Med., 53: 55-58.
CrossRef  |  Direct Link  |  
54:   Ogawa, M., S. Nishiyama, H. Tsukada, K. Hatano and T. Fuchigami et al., 2010. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype. Nulc. Med. Biol., 37: 347-355.
CrossRef  |  Direct Link  |  
55:   Ogawa, M., Y. Iida, M. Nakagawa, Y. Kuge and H. Kawashima et al., 2006. Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: Search for an imaging index suitable for the early detection of Alzheimer's disease. Nucl. Med. Biol., 33: 249-254.
CrossRef  |  Direct Link  |  
56:   Ogawa, M., Y. Magata, T. Kato, K. Hatano and S. Ishino et al., 2006. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J. Nucl. Med., 47: 1845-1850.
Direct Link  |  
57:   Ogawa. M., I.O. Umeda, M. Kosugi, A. Kawai and Y. Hamaya et al., 2014. Development of 111In-Labeled Liposomes for Vulnerable Atherosclerotic Plaque Imaging. J. Nucl. Med., 55: 115-120.
CrossRef  |  Direct Link  |  
58:   Ohnishi, T., T. Hayashi, S. Okabe, I. Nonaka and H. Matsuda et al., 2004. Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C]raclopride positron emission tomography study in anesthetized macaque monkeys. Biol. Psychiat., 55: 484-489.
CrossRef  |  Direct Link  |  
59:   Okada, H., Y. Ouchi, M. Ogawa, M. Futatsubashi and Y. Saito et al., 2013. Alterations in alpha4beta2 nicotinic receptors in cognitive decline in Alzheimer's aetiopathology. Brain, 136: 3004-3017.
CrossRef  |  Direct Link  |  
60:   Regino, C.A., M. Ogawa, R. Alford, K.J. Wong and N. Kosaka et al., 2010. Two-step synthesis of galactosylated human serum albumin as a targeted optical imaging agent for peritoneal carcinomatosis. J. Med. Chem., 53: 1579-1586.
CrossRef  |  Direct Link  |  
61:   Saji, H., M. Ogawa, M. Ueda, Y. Iida and Y. Magata et al., 2002. Evaluation of radioiodinated 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine as a ligand for SPECT investigations of brain nicotinic acetylcholine receptors. Ann. Nucl. Med., 16: 189-200.
CrossRef  |  Direct Link  |  
62:   Saji, H., Y. Iida, H. Kawashima, M. Ogawa and Y. Kitamura et al., 2003. In vivo., imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography. Anal. Sci., 19: 67-71.
CrossRef  |  Direct Link  |  
63:   Satomi, T., M. Ogawa, I. Mori, S. Ishino, K. Kubo, Y. Magata and T. Nishimoto, 2013. Comparison of Contrast Agents for Atherosclerosis Imaging Using Cultured Macrophages: FDG Versus Ultrasmall Superparamagnetic Iron Oxide. J. Nucl. Med., 54: 999-1004.
CrossRef  |  Direct Link  |  
64:   Sekimata, K., K. Hatano, M. Ogawa, J. Abe and Y. Magata et al., 2008. Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nucl., Med. Biol., 35: 327-334.
CrossRef  |  Direct Link  |  
65:   Tajima, T., K. Hatano, M. Suzuki, M. Ogawa and Y. Sakiyama et al., 2007. Increased binding potential of [11C]raclopride during unilateral continuous microinjection of nicotine in rat striatum observed by positron emission tomography. Synapse, 61: 943-950.
CrossRef  |  Direct Link  |  
66:   Takahata, K., S. Shimazu, F. Yoneda, M. Ogawa, Y. Iida and H. Saji, 2003. Effects of monoamine oxidase inhibitors on the diethyldithiocarbamate-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in C57BL/6 mice. J. Neural. Transm., 110: 859-869.
CrossRef  |  Direct Link  |  
67:   Turkbey, B., H. Kobayashi, M. Ogawa, M. Bernardo and P.L. Choyke, 2009. Imaging of tumor angiogenesis: functional or targeted? AJR Am. J. Roentgenol., 193: 304-313.
Direct Link  |  
68:   Ueda, M., Y. Iida, A. Tominaga, T. Yoneyama and M. Ogawa et al., 2010. Nicotinic acetylcholine receptors expressed in the ventralposterolateral thalamic nucleus play an important role in anti-allodynic effects. Br. J. Pharmacol., 159: 1201-1210.
CrossRef  |  Direct Link  |  
69:   Ueda, M., Y. Iida, T. Mukai, M. Mamede and K. Ishizu et al., 2004. 5-[123I]Iodo-A-85380: assessment of pharmacological safety, radiation dosimetry and SPECT imaging of brain nicotinic receptors in healthy human subjects. Ann. Nucl. Med., 18: 337-344.
Direct Link  |  
70:   Ueda, M., Y. Iida, T. Yoneyama, T. Kawai, M. Ogawa, Y. Magata and H. Saji, 2011. In vivo relationship between thalamic nicotinic acetylcholine receptor occupancy rates and antiallodynic effects in a rat model of neuropathic pain: persistent agonist binding inhibits the expression of antiallodynic effects. Synapse, 65: 77-83.
CrossRef  |  Direct Link  |  
71:   Ueda, M., Y. Iida, Y. Kitamura, H. Kawashima, M. Ogawa, Y. Magata and H. Saji, 2008. 5-Iodo-A-85380, a specific ligand for alpha 4 beta 2 nicotinic acetylcholine receptors, prevents glutamate neurotoxicity in rat cortical cultured neurons. Brain, Res., 1199: 46-52.
CrossRef  |  Direct Link  |  
72:   Urano, Y., M. Sakabe, N. Kosaka, M. Ogawa and M. Mitsunaga et al., 2011. Rapid cancer detection by topically spraying a gamma-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med. 3: 110-119.
CrossRef  |  Direct Link  |