Hi, I am Zhenyu Sun, My LiveDNA is 86.12317
 
   
  Home
 
 
 
Dr. Zhenyu Sun
 
Highest Degree: Ph.D. in Physical Chemistry from Chinese Academy of Sciences, China
 
Institute: Beijing University of Chemical Technology, China
 
Area of Interest: Physical Science Engineering
  •   Nanotechnology
  •   Advanced Materials
  •   Physical Chemistry
  •   Synthesis
 
URL: http://livedna.org/86.12317
 
My SELECTED Publications
1:   An, G., P. Yu, L. Mao, Z. Sun and Z. Liu et al., 2007. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells. Carbon, 45: 536-542.
CrossRef  |  Direct Link  |  
2:   An, G., W. Ma, Z. Sun, Z. Liu and B. Han et al., 2007. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 45: 1795-1801.
CrossRef  |  Direct Link  |  
3:   Bergin, S.D., V. Nicolosi, H. Cathcart, M. Lotya and D. Rickard et al., 2008. Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation. J. Phys. Chem. C, 112: 972-977.
CrossRef  |  Direct Link  |  
4:   Bergin, S.D., V. Nicolosi, P.V. Streich, S. Giordani and Z. Sun et al., 2008. Towards solutions of single‐walled carbon nanotubes in common solvents. Adv. Mater., 20: 1876-1881.
CrossRef  |  Direct Link  |  
5:   Bergin, S.D., Z. Sun, D. Rickard, P.V. Streich, J.P. Hamilton and J.N. Coleman, 2009. Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano, 3: 2340-2350.
CrossRef  |  Direct Link  |  
6:   Bergin, S.D., Z. Sun, P. Streich, J. Hamilton and J. Coleman, 2010. New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C, 114: 231-237.
CrossRef  |  Direct Link  |  
7:   Dai, X., Z. Liu, B. Han, Z. Sun and Y. Wang et al., 2004. Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. Chem. Commun., 19: 2190-2191.
CrossRef  |  Direct Link  |  
8:   Ding, K., Z. Miao, B. Hu, G. An, Z. Sun, B. Han and Z. Liu, 2009. Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid. Langmuir, 26: 5129-5134.
CrossRef  |  Direct Link  |  
9:   Ding, K., Z. Miao, B. Hu, G. An, Z. Sun, B. Han and Z. Liu, 2010. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir, 26: 10294-10302.
CrossRef  |  Direct Link  |  
10:   Du, J., L. Fu, Z. Liu, B. Han and Z. Li et al., 2005. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties. J. Phys. Chem. B, 109: 12772-12776.
CrossRef  |  Direct Link  |  
11:   Hernandez, Y., V. Nicolosi, M. Lotya, F.M. Blighe and Z. Sun et al., 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 3: 563-568.
CrossRef  |  Direct Link  |  
12:   Liu, G., H. Ma, I. Teixeira, Z. Sun, Q.N. Xia, X.L. Hong and S.C.E. Tsang, 2016. Hydrazine-assisted liquid exfoliation of MoS2 for catalytic hydrodeoxygenation of 4-methylphenol. Chem. Eur. J., 22: 2910-2914.
CrossRef  |  Direct Link  |  
13:   Masa, J., P. Weide, D. Peeters, I. Sinev and W. Xia et al., 2016. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater., Vol. 6. 10.1002/aenm.201502313.
CrossRef  |  Direct Link  |  
14:   Masa, J., W. Xia, I. Sinev, A.Q. Zhao and Z.Y. Sun et al., 2014. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angewandte Chemie Int. Edn., 53: 8508-8512.
CrossRef  |  Direct Link  |  
15:   Miao, S., Z. Liu, B. Han, J. Huang, Z. Sun, J. Zhang and T. Jiang, 2006. Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angewandte Chemie Int. Edn., 45: 266-269.
CrossRef  |  Direct Link  |  
16:   Sun, Z., E. Madej, C. Wiktor, I. Sinev and R.A. Fischer et al., 2015. One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries. Chem. Eur. J., 21: 16154-16161.
CrossRef  |  Direct Link  |  
17:   Sun, Z., H. Yuan, Z. Liu, B. Han and X. Zhang, 2005. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater., 17: 2993-2997.
CrossRef  |  Direct Link  |  
18:   Sun, Z., H. Zhang, G. An, G. Yang and Z. Liu, 2010. Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. J. Mater. Chem., 20: 1947-1952.
CrossRef  |  Direct Link  |  
19:   Sun, Z., H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu and Z. Wu, 2011. Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating. Langmuir, 27: 6244-6251.
CrossRef  |  Direct Link  |  
20:   Sun, Z., I. O'Connor, S.D. Bergin and J.N. Coleman, 2009. Effects of ambient conditions on solvent-nanotube dispersions: Exposure to water and temperature variation. J. Phys. Chem. C, 113: 1260-1266.
CrossRef  |  Direct Link  |  
21:   Sun, Z., J. Masa, P. Weide, S.M. Fairclough and A.W. Robertson et al., 2015. High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A, 3: 15444-15450.
CrossRef  |  Direct Link  |  
22:   Sun, Z., J. Masa, W. Xia, D. Konigs and A. Ludwig et al., 2012. Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement. ACS Catal., 2: 1647-1653.
CrossRef  |  Direct Link  |  
23:   Sun, Z., J. Masa, Z. Liu, W. Schuhmann and M. Muhler, 2012. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem. Eur. J., 18: 6972-6978.
CrossRef  |  Direct Link  |  
24:   Sun, Z., J. Vivekananthan, D.A. Guschin, X. Huang and V. Kuznetsov et al., 2014. High-concentration graphene dispersions with minimal stabilizer: A scaffold for enzyme immobilization for glucose oxidation. Chem. Eur. J., 20: 5752-5761.
CrossRef  |  Direct Link  |  
25:   Sun, Z., K. Xie, Z.A. Li, I. Sinev and P. Ebbinghaus et al., 2014. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-Ion batteries. Chem. Eur. J., 20: 2022-2030.
CrossRef  |  Direct Link  |  
26:   Sun, Z., N. Dong, K. Wang, D. Konig and T.C. Nagaiah et al., 2013. Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications. Carbon, 62: 182-192.
CrossRef  |  Direct Link  |  
27:   Sun, Z., N. Dong, K. Xie, W. Xia and D. Konigs et al., 2013. Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etching process. J. Phys. Chem. C, 117: 11811-11817.
CrossRef  |  Direct Link  |  
28:   Sun, Z., S. Poller, X. Huang, D. Guschin and C. Taetz et al., 2013. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon, 64: 288-294.
CrossRef  |  Direct Link  |  
29:   Sun, Z., V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne and J.N. Coleman, 2008. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C, 112: 10692-10699.
CrossRef  |  Direct Link  |  
30:   Sun, Z., V. Nicolosi, S.D. Bergin and J.N. Coleman, 2008. Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, Vol. 19. .
Direct Link  |  
31:   Sun, Z., X. Huang, F. Liu, X. Yang and C. Rosler et al., 2014. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chem. Commun., 50: 10382-10385.
CrossRef  |  Direct Link  |  
32:   Sun, Z., X. Huang, M. Muhler, W. Schuhmann and E. Ventosa, 2014. A carbon-coated TiO2 (B) nanosheet composite for lithium ion batteries. Chem. Commun., 50: 5506-5509.
CrossRef  |  Direct Link  |  
33:   Sun, Z., X. Wang, Z. Liu, H. Zhang, P. Yu and L. Mao, 2010. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells. Langmuir, 26: 12383-12389.
CrossRef  |  Direct Link  |  
34:   Sun, Z., X. Zhang, B. Han, Y. Wu and G. An et al., 2007. Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution. Carbon, 45: 2589-2596.
CrossRef  |  Direct Link  |  
35:   Sun, Z., X. Zhang, N. Na, Z. Liu, B. Han and G. An, 2006. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J. Phys. Chem. B, 110: 13410-13414.
CrossRef  |  Direct Link  |  
36:   Sun, Z., Y. Zhao, Y. Xie, R. Tao, H. Zhang, C. Huang and Z. Liu, 2010. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem., 12: 1007-1011.
CrossRef  |  Direct Link  |  
37:   Sun, Z., Z. Li, C. Huang, Y. Zhao, H. Zhang, R. Tao and Z. Liu, 2011. Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading. Carbon, 49: 4376-4384.
CrossRef  |  Direct Link  |  
38:   Sun, Z., Z. Liu, B. Han, Y. Wang, J. Du, Z. Xie and G. Han, 2005. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water. Adv. Mater., 17: 928-932.
CrossRef  |  Direct Link  |  
39:   Sun, Z., Z. Liu, J.Du, Y. Wang, B. Han and T. Mu, 2004. Synthesis of tubular graphite cones through a catalytically thermal reduction route. J. Phys. Chem. B, 108: 9811-9814.
CrossRef  |  Direct Link  |  
40:   Sun, Z., Z. Liu, Y. Wang, B. Han, J. Du and J. Zhang, 2005. Fabrication and characterization of magnetic carbon nanotube composites. J. Mater. Chem., 15: 4497-4501.
CrossRef  |  Direct Link  |  
41:   Sun, Z., Z. Sun, Z. Liu, B. Han, S. Miao, J. Du and Z. Miao, 2006. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon, 44: 888-893.
CrossRef  |  Direct Link  |  
42:   Wang, J., D. Fruchtl, Z. Sun, J.N. Coleman and W.J. Blau, 2010. Control of optical limiting of carbon nanotube dispersions by changing solvent parameters. J. Phys. Chem. C, 114: 6148-6156.
CrossRef  |  Direct Link  |  
43:   Wang, Y., Z. Liu, B. Han, Z. Sun and J. Du et al., 2005. Replication of biological organizations through a supercritical fluid route. Chem. Commun., 23: 2948-2950.
CrossRef  |  Direct Link  |  
44:   Wang, Y., Z. Liu, B. Han, Z. Sun, J. Zhang and D. Sun, 2005. Phase-separation-induced micropatterned polymer surfaces and their applications. Adv. Funct. Mater., 15: 655-663.
CrossRef  |  Direct Link  |  
45:   Wang, Y., Z. Liu, B. Han, Z. Sun, Y. Huang and G. Yang, 2005. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant. Langmuir, 21: 833-836.
CrossRef  |  Direct Link  |  
46:   Wei, Y. and Z. Sun, 2015. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr. Opin. Colloid Interface Sci., 20: 311-321.
CrossRef  |  Direct Link  |  
47:   Xie, Y., K. Ding, Z. Liu, J. Li and G. An et al., 2010. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions. Chem. Eur. J., 16: 6687-6692.
CrossRef  |  Direct Link  |  
48:   Xie, Y., K.L. Ding, Z.M. Liu, R.T. Tao, Z.Y. Sun, H.Y. Zhang and G.M. An, 2009. In situ controllable loading of ultrafine noble metal particles on titania. J. Am. Chem. Soc., 131: 6648-6649.
CrossRef  |  Direct Link  |  
49:   Zhang, H., Y. Xie, Z. Sun, R. Tao, C. Huang, Y. Zhao and Z. Liu, 2010. In-situ loading ultrafine AuPd particles on ceria: Highly active catalyst for solvent-free selective oxidation of benzyl alcohol. Langmuir, 27: 1152-1157.
CrossRef  |  Direct Link  |