Dr. Qilin  Wang
My Social Links

Dr. Qilin Wang

Lecturer
Griffith University, Australia


Highest Degree
Ph.D. in Environmental Engineering from University of Queensland, Australia

Share this Profile

Area of Interest:

Environmental Sciences
100%
Innovative Technologies
62%
Wastewater Engineering
90%
Resource and Energy
75%
Civil Engineering
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Wang, Q., W. Wei, Y. Gong, Q. Yu, Q. Li, J. Sun and Z. Yuan, 2017. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ., 587-588: 510-521.
    CrossRef  |  Direct Link  |  
  2. Qian, J., L. Wang, Y. Wu, P.L. Bond and Y. Zhang et al., 2017. Free sulfurous acid (FSA) inhibition of Biological Thiosulfate Reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere, 176: 212-220.
    CrossRef  |  Direct Link  |  
  3. Qian, J., J. Zhou, L. Wang, L. Wei, Q. Li, D. Wang and Q. Wang, 2017. Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem. Eng. J., 309: 330-338.
    CrossRef  |  Direct Link  |  
  4. Liu, Y., Y. Pan, D. Huang and Q. Wang, 2017. Fault prognosis of filamentous sludge bulking using an enhanced multi-output gaussian processes regression. Control Eng. Pract., 62: 46-54.
    CrossRef  |  Direct Link  |  
  5. Zhao, J., Y. Liu, B. Ni, Q. Wang and D. Wang et al., 2016. Combined effect of free nitrous acid pretreatment and sodium dodecylbenzene sulfonate on short-Chain fatty acid production from waste activated sludge. Sci. Rep., Vol. 6. 10.1038/srep21622.
    CrossRef  |  
  6. Zhang, T., Q. Wang, L. Ye and Z. Yuan, 2016. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment. J. Ind. Microbiol. Biotechnol., 43: 713-717.
    CrossRef  |  Direct Link  |  
  7. Zhang, T., Q. Wang, L. Ye and Z. Yuan, 2016. Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chem. Eng. J., 290: 31-36.
    CrossRef  |  Direct Link  |  
  8. Xie, G.J., B.F. Liu, Q. Wang, J. Ding and N.Q. Ren, 2016. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production. Water Res., 93: 56-64.
    CrossRef  |  Direct Link  |  
  9. Wei, W., Q. Wang, A. Li, J. Yang, F. Ma, S. Pi and D. Wu, 2016. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior mechanism assessment. Sci. Rep., Vol. 6. 10.1038/srep31575.
    CrossRef  |  
  10. Wang, Q., X. Zhou, L. Peng, D. Wang, G.J. Xie and Z. Yuan, 2016. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment. Chemosphere, 150: 152-158.
    CrossRef  |  Direct Link  |  
  11. Wang, Q., X. Hao and Z. Yuan, 2016. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid. Chemosphere, 144: 1869-1873.
    CrossRef  |  Direct Link  |  
  12. Wang, Q., J. Sun, C. Zhang, G.J. Xie and X. Zhou, 2016. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate. Sci. Rep., Vol. 6. 10.1038/srep19713.
    CrossRef  |  
  13. Wang, Q., B.J. Ni, R. Lemaire, X. Hao and Z. Yuan, 2016. Modeling of nitrous oxide production from nitritation reactors treating real anaerobic digestion liquor. Sci. Rep., Vol. 6. 10.1038/srep25336.
    CrossRef  |  
  14. Wang, D., Q. Wang, A.E. Laloo and Z. Yuan, 2016. Reducing N2O emission from a domestic-strength nitrifying culture by free nitrous acid-based sludge treatment. Environ. Sci. Technol., 50: 7425-7433.
    CrossRef  |  Direct Link  |  
  15. Wang, D., Q. Wang, A. Laloo, Y. Xu, P.L. Bond and Z. Yuan, 2016. Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci. Rep., Vol. 6. 10.1038/srep25547.
    CrossRef  |  
  16. Tang, J., Y. Huang, Y. Gong, H. Lyu, Q. Wang and J. Ma, 2016. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg (II) removal. J. Hazardous Mater., 316: 151-158.
    CrossRef  |  Direct Link  |  
  17. Sun, J., X. Dai, Q. Wang, Y. Pan and B.J. Ni, 2016. Modelling methane production and sulfate reduction in anaerobic granular sludge reactor with ethanol as electron donor. Sci. Rep., Vol. 6. 10.1038/srep35312.
    CrossRef  |  
  18. Song, K., X. Zhou, Y. Liu, Y. Gong, B. Zhou, D. Wang and Q. Wang, 2016. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: Hydrogen peroxide versus persulfate. Sci. Rep., Vol. 6. 10.1038/srep24800.
    CrossRef  |  
  19. Song, K., X. Zhou, Y. Liu, G.J. Xie and D. Wang et al., 2016. Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron. Chem. Eng. J., 295: 436-442.
    CrossRef  |  Direct Link  |  
  20. Qian, J., J. Zhou, Z. Zhang, R. Liu and Q. Wang, 2016. Biological nitrogen removal through nitritation coupled with thiosulfate-driven denitritation. Sci. Rep., Vol. 6. 10.1038/srep27502.
    CrossRef  |  
  21. Lyu, H., Y. Gong, J. Tang, Y. Huang and Q. Wang, 2016. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environ. Sci. Pollut. Res., 23: 14472-14488.
    CrossRef  |  Direct Link  |  
  22. Liu, Y., J. Guo, Q. Wang and D. Huang, 2016. Prediction of filamentous sludge bulking using a state-based gaussian processes regression model. Sci. Rep., Vol. 6. 10.1038/srep31303.
    CrossRef  |  
  23. Liu, Y., H. Xiao, Y. Pan, D. Huang and Q. Wang, 2016. Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis. Chemometrics Intell. Laboratory Syst., 157: 85-95.
    CrossRef  |  Direct Link  |  
  24. Liu, C., K. Han, D.J. Lee and Q. Wang, 2016. Simultaneous biological removal of phenol, sulfide and nitrate using expanded granular sludge bed reactor. Applied Microbiol. Biotechnol., 100: 4211-4217.
    CrossRef  |  Direct Link  |  
  25. Liu, C., D. Zhao, W. Ma, Y. Guo, A. Wang, Q. Wang and D.J. Lee, 2016. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Applied Microbiol. Biotechnol., 100: 1421-1426.
    CrossRef  |  Direct Link  |  
  26. Chen, H., Y. Liu, B.J. Ni, Q. Wang and D. Wang et al., 2016. Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area. Biochem. Eng. J., 113: 114-122.
    CrossRef  |  Direct Link  |  
  27. Zhou, X., Q. Wang, G. Jiang, P. Liu and Z. Yuan, 2015. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresour. Technol., 185: 416-420.
    CrossRef  |  Direct Link  |  
  28. Zhou, X., Q. Wang and G. Jiang, 2015. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresour. Technol., 182: 267-271.
    CrossRef  |  Direct Link  |  
  29. Zhou, X., G. Jiang, T. Zhang, Q. Wang, G.J. Xie and Z. Yuan, 2015. Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Bioresour. Technol., 192: 817-820.
    CrossRef  |  Direct Link  |  
  30. Zhou, X., G. Jiang, Q. Wang and Z. Yuan, 2015. Role of indigenous iron in improving sludge dewaterability through peroxidation. Sci. Rep., Vol. 5. 10.1038/srep07516.
    CrossRef  |  
  31. Zhang, T., Q. Wang, L. Ye, D. Batstone and Z. Yuan, 2015. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Sci. Rep., Vol. 5. 10.1038/srep16631.
    CrossRef  |  
  32. Zhang, T., Q. Wang, J. Khan and Z. Yuan, 2015. Free nitrous acid breaks down extracellular polymeric substances in waste activated sludge. RSC Adv., 5: 43312-43318.
    CrossRef  |  Direct Link  |  
  33. Xie, G.J., B.F. Liu, J. Ding, D. Xing, Q. Wang and N.Q. Ren, 2015. Enhanced hydrogen production by photofermentative microbial aggregation induced by L-cysteine: The effect of substrate concentration, C/N ratio and agitation rate. RSC Adv., 5: 91120-91126.
    CrossRef  |  
  34. Wang, Q. and Z. Yuan, 2015. Enhancing aerobic digestion of full-scale waste activated sludge using free nitrous acid pre-treatment. RSC Adv., 5: 19128-19134.
    CrossRef  |  Direct Link  |  
  35. Liu, Y., Y. Pan, Q. Wang and D. Huang, 2015. Statistical process monitoring with integration of data projection and one-class classification. Chemometrics Intell. Lab. Syst., 149: 1-11.
    CrossRef  |  Direct Link  |  
  36. Liu, Y., Q. Wang, Y. Zhang and B.J. Ni, 2015. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate. Sci. Rep., Vol. 5. Sci. Rep., Vol. 5. .
  37. Law, Y., L. Ye, Q. Wang, S. Hu, M. Pijuan and Z. Yuan, 2015. Producing free nitrous acid-A green and renewable biocidal agent-From anaerobic digester liquor. Chem. Eng. J., 259: 62-69.
    CrossRef  |  Direct Link  |  
  38. Zhou, X., Q. Wang, G. Jiang, X. Zhang and Z. Yuan, 2014. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresour. Technol., 174: 103-107.
    CrossRef  |  Direct Link  |  
  39. Zhou, X., G. Jiang, Q. Wang and Z. Yuan, 2014. A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Adv., 4: 50644-50652.
    CrossRef  |  
  40. Wang, Q., L. Ye, G. Jiang, S. Hu and Z. Yuan, 2014. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res., 55: 245-255.
    CrossRef  |  Direct Link  |  
  41. Wang, Q., G. Jiang, L. Ye, M. Pijuan and Z. Yuan, 2014. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Res., 62: 202-210.
    CrossRef  |  Direct Link  |  
  42. Wang, Q., G. Jiang, L. Ye and Z. Yuan, 2014. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Res., 63: 71-80.
    CrossRef  |  Direct Link  |  
  43. Wang, Q., L. Ye, G. Jiang, P.D. Jensen, D.J. Batstone and Z. Yuan, 2013. Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge. Environ. Sci. Technol., 47: 11897-11904.
    CrossRef  |  Direct Link  |  
  44. Wang, Q., L. Ye, G. Jiang and Z. Yuan, 2013. A free nitrous acid (FNA)-based technology for reducing sludge production. Water Res., 47: 3663-3672.
    CrossRef  |  Direct Link  |  
  45. Pijuan, M., Q. Wang, L. Ye and Z. Yuan, 2012. Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresour. Technol., 116: 92-98.
    CrossRef  |  Direct Link  |  
  46. Wang, Q.L., X.D. Hao and Y.L. Cao, 2011. Enriched experiment and endogenous processes of glycogen-accumulating organisms (GAOs). Huan Jing ke Xue Huanjing Kexue, 32: 1034-1041.
    Direct Link  |  
  47. Hao, X., Q. Wang, Y. Cao and M.C. van Loosdrecht, 2011. Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2d. Water Res., 45: 5130-5140.
    CrossRef  |  Direct Link  |  
  48. Wang, Q., X. Hao and Y. Cao, 2010. Enriched experiment and endogenous characteristics of polyphosphate-accumulating organisms (PAOs). Acta Sci. Circ., 30: 2405-2413.
  49. Hao, X.D., Q.L. Wang, J.Y. Zhu and M.C.van Loosdrecht, 2010. Microbiological endogenous processes in biological wastewater treatment systems. Critical Rev. Environ. Sci. Technol., 40: 239-265.
    CrossRef  |  Direct Link  |  
  50. Hao, X., Q. Wang, Y. Cao and M.C. van Loosdrecht, 2010. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate. Water Res., 44: 3993-4001.
    CrossRef  |  Direct Link  |  
  51. Hao, X., Q. Wang, Y. Cao and M. van Loosdrecht, 2010. Experimental evaluation of decrease in the activities of polyphosphate/glycogen‐accumulating organisms due to cell death and activity decay in activated sludge. Biotechnol. Bioeng., 106: 399-407.
    CrossRef  |  Direct Link  |  
  52. Wang, Q., X. Hao and F. Qiu, 2009. Situation of seawater desalination applied in engineering and its prospect in the world. Water Resour. Protect., 25: 1-5.
  53. Hao, X., Y. Li and Q. Wang, 2009. Technical measures ensuring drinking water in switzerland: Detection, treatment and protection. China Water Wastewater, 25: 103-108.
  54. Hao, X., X. Zhang, Y. Cao and Q. Wang, 2009. Determining the decay characteristics of nitrifying bacteria in activated sludge using molecular biological techniques. Acta Sci. Circ., 29: 2033-2040.
  55. Hao, X., Q. Wang, X. Zhang, Y. Cao and C.M. van Mark Loosdrecht, 2009. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge. Water Res., 43: 3604-3612.
    CrossRef  |  Direct Link  |  
  56. Hao, X., K. Wang and Q. Wang, 2009. Global situation of research and development of nanotechnology applied in treatment of drinking water. China Water Wastewater, 25: 27-31.
  57. Hao, X. and Q. Wang, 2009. Role of worms-L. variegatus in sludge reduction and the analyses of their application prospects. Chin. J. Environ. Eng., 3: 769-776.
  58. Cao, Y., X. Hao, Q. Wang and X. Zhang, 2009. An effective method of measuring the activity of higher microorganisms in activated sludge. Acta Sci. Circ., 29: 1395-1399.
  59. Hao, X., Q. Wang and Y. Li, 2008. Overview of leading-edge technologies for sustainable water and wastewater treatment. China Water Wastewater, 24: 1-6.
  60. Hao, X., Q. Wang and Y. Cao, 2008. Critical review of technology for sludge minimization and prospects of potential technology. China Water Wastewater, 24: 1-5.