Hi, I am Qilin Wang, My LiveDNA is 86.15899
 
   
  Home
 
 
 
Dr. Qilin Wang
 
Highest Degree: Ph.D. in Environmental Engineering from University of Queensland, Australia
 
Institute: Griffith University, Australia
 
Area of Interest: Environmental Sciences
  •   Innovative Technologies
  •   Wastewater Engineering
  •   Resource and Energy
  •   Civil Engineering
 
URL: http://livedna.org/86.15899
 
My SELECTED Publications
1:   Cao, Y., X. Hao, Q. Wang and X. Zhang, 2009. An effective method of measuring the activity of higher microorganisms in activated sludge. Acta Sci. Circ., 29: 1395-1399.
2:   Chen, H., Y. Liu, B.J. Ni, Q. Wang and D. Wang et al., 2016. Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area. Biochem. Eng. J., 113: 114-122.
CrossRef  |  Direct Link  |  
3:   Hao, X. and Q. Wang, 2009. Role of worms-L. variegatus in sludge reduction and the analyses of their application prospects. Chin. J. Environ. Eng., 3: 769-776.
4:   Hao, X., K. Wang and Q. Wang, 2009. Global situation of research and development of nanotechnology applied in treatment of drinking water. China Water Wastewater, 25: 27-31.
5:   Hao, X., Q. Wang and Y. Cao, 2008. Critical review of technology for sludge minimization and prospects of potential technology. China Water Wastewater, 24: 1-5.
6:   Hao, X., Q. Wang and Y. Li, 2008. Overview of leading-edge technologies for sustainable water and wastewater treatment. China Water Wastewater, 24: 1-6.
7:   Hao, X., Q. Wang, X. Zhang, Y. Cao and C.M. van Mark Loosdrecht, 2009. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge. Water Res., 43: 3604-3612.
CrossRef  |  Direct Link  |  
8:   Hao, X., Q. Wang, Y. Cao and M. van Loosdrecht, 2010. Experimental evaluation of decrease in the activities of polyphosphate/glycogen‐accumulating organisms due to cell death and activity decay in activated sludge. Biotechnol. Bioeng., 106: 399-407.
CrossRef  |  Direct Link  |  
9:   Hao, X., Q. Wang, Y. Cao and M.C. van Loosdrecht, 2010. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate. Water Res., 44: 3993-4001.
CrossRef  |  Direct Link  |  
10:   Hao, X., Q. Wang, Y. Cao and M.C. van Loosdrecht, 2011. Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2d. Water Res., 45: 5130-5140.
CrossRef  |  Direct Link  |  
11:   Hao, X., X. Zhang, Y. Cao and Q. Wang, 2009. Determining the decay characteristics of nitrifying bacteria in activated sludge using molecular biological techniques. Acta Sci. Circ., 29: 2033-2040.
12:   Hao, X., Y. Li and Q. Wang, 2009. Technical measures ensuring drinking water in switzerland: Detection, treatment and protection. China Water Wastewater, 25: 103-108.
13:   Hao, X.D., Q.L. Wang, J.Y. Zhu and M.C.van Loosdrecht, 2010. Microbiological endogenous processes in biological wastewater treatment systems. Critical Rev. Environ. Sci. Technol., 40: 239-265.
CrossRef  |  Direct Link  |  
14:   Law, Y., L. Ye, Q. Wang, S. Hu, M. Pijuan and Z. Yuan, 2015. Producing free nitrous acid-A green and renewable biocidal agent-From anaerobic digester liquor. Chem. Eng. J., 259: 62-69.
CrossRef  |  Direct Link  |  
15:   Liu, C., D. Zhao, W. Ma, Y. Guo, A. Wang, Q. Wang and D.J. Lee, 2016. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Applied Microbiol. Biotechnol., 100: 1421-1426.
CrossRef  |  Direct Link  |  
16:   Liu, C., K. Han, D.J. Lee and Q. Wang, 2016. Simultaneous biological removal of phenol, sulfide and nitrate using expanded granular sludge bed reactor. Applied Microbiol. Biotechnol., 100: 4211-4217.
CrossRef  |  Direct Link  |  
17:   Liu, Y., H. Xiao, Y. Pan, D. Huang and Q. Wang, 2016. Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis. Chemometrics Intell. Laboratory Syst., 157: 85-95.
CrossRef  |  Direct Link  |  
18:   Liu, Y., J. Guo, Q. Wang and D. Huang, 2016. Prediction of filamentous sludge bulking using a state-based gaussian processes regression model. Sci. Rep., Vol. 6. 10.1038/srep31303.
CrossRef  |  
19:   Liu, Y., Q. Wang, Y. Zhang and B.J. Ni, 2015. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate. Sci. Rep., Vol. 5. Sci. Rep., Vol. 5. .
20:   Liu, Y., Y. Pan, D. Huang and Q. Wang, 2017. Fault prognosis of filamentous sludge bulking using an enhanced multi-output gaussian processes regression. Control Eng. Pract., 62: 46-54.
CrossRef  |  Direct Link  |  
21:   Liu, Y., Y. Pan, Q. Wang and D. Huang, 2015. Statistical process monitoring with integration of data projection and one-class classification. Chemometrics Intell. Lab. Syst., 149: 1-11.
CrossRef  |  Direct Link  |  
22:   Lyu, H., Y. Gong, J. Tang, Y. Huang and Q. Wang, 2016. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environ. Sci. Pollut. Res., 23: 14472-14488.
CrossRef  |  Direct Link  |  
23:   Pijuan, M., Q. Wang, L. Ye and Z. Yuan, 2012. Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresour. Technol., 116: 92-98.
CrossRef  |  Direct Link  |  
24:   Qian, J., J. Zhou, L. Wang, L. Wei, Q. Li, D. Wang and Q. Wang, 2017. Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem. Eng. J., 309: 330-338.
CrossRef  |  Direct Link  |  
25:   Qian, J., J. Zhou, Z. Zhang, R. Liu and Q. Wang, 2016. Biological nitrogen removal through nitritation coupled with thiosulfate-driven denitritation. Sci. Rep., Vol. 6. 10.1038/srep27502.
CrossRef  |  
26:   Qian, J., L. Wang, Y. Wu, P.L. Bond and Y. Zhang et al., 2017. Free sulfurous acid (FSA) inhibition of Biological Thiosulfate Reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere, 176: 212-220.
CrossRef  |  Direct Link  |  
27:   Song, K., X. Zhou, Y. Liu, G.J. Xie and D. Wang et al., 2016. Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron. Chem. Eng. J., 295: 436-442.
CrossRef  |  Direct Link  |  
28:   Song, K., X. Zhou, Y. Liu, Y. Gong, B. Zhou, D. Wang and Q. Wang, 2016. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: Hydrogen peroxide versus persulfate. Sci. Rep., Vol. 6. 10.1038/srep24800.
CrossRef  |  
29:   Sun, J., X. Dai, Q. Wang, Y. Pan and B.J. Ni, 2016. Modelling methane production and sulfate reduction in anaerobic granular sludge reactor with ethanol as electron donor. Sci. Rep., Vol. 6. 10.1038/srep35312.
CrossRef  |  
30:   Tang, J., Y. Huang, Y. Gong, H. Lyu, Q. Wang and J. Ma, 2016. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg (II) removal. J. Hazardous Mater., 316: 151-158.
CrossRef  |  Direct Link  |  
31:   Wang, D., Q. Wang, A. Laloo, Y. Xu, P.L. Bond and Z. Yuan, 2016. Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci. Rep., Vol. 6. 10.1038/srep25547.
CrossRef  |  
32:   Wang, D., Q. Wang, A.E. Laloo and Z. Yuan, 2016. Reducing N2O emission from a domestic-strength nitrifying culture by free nitrous acid-based sludge treatment. Environ. Sci. Technol., 50: 7425-7433.
CrossRef  |  Direct Link  |  
33:   Wang, Q. and Z. Yuan, 2015. Enhancing aerobic digestion of full-scale waste activated sludge using free nitrous acid pre-treatment. RSC Adv., 5: 19128-19134.
CrossRef  |  Direct Link  |  
34:   Wang, Q., B.J. Ni, R. Lemaire, X. Hao and Z. Yuan, 2016. Modeling of nitrous oxide production from nitritation reactors treating real anaerobic digestion liquor. Sci. Rep., Vol. 6. 10.1038/srep25336.
CrossRef  |  
35:   Wang, Q., G. Jiang, L. Ye and Z. Yuan, 2014. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Res., 63: 71-80.
CrossRef  |  Direct Link  |  
36:   Wang, Q., G. Jiang, L. Ye, M. Pijuan and Z. Yuan, 2014. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Res., 62: 202-210.
CrossRef  |  Direct Link  |  
37:   Wang, Q., J. Sun, C. Zhang, G.J. Xie and X. Zhou, 2016. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate. Sci. Rep., Vol. 6. 10.1038/srep19713.
CrossRef  |  
38:   Wang, Q., L. Ye, G. Jiang and Z. Yuan, 2013. A free nitrous acid (FNA)-based technology for reducing sludge production. Water Res., 47: 3663-3672.
CrossRef  |  Direct Link  |  
39:   Wang, Q., L. Ye, G. Jiang, P.D. Jensen, D.J. Batstone and Z. Yuan, 2013. Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge. Environ. Sci. Technol., 47: 11897-11904.
CrossRef  |  Direct Link  |  
40:   Wang, Q., L. Ye, G. Jiang, S. Hu and Z. Yuan, 2014. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res., 55: 245-255.
CrossRef  |  Direct Link  |  
41:   Wang, Q., W. Wei, Y. Gong, Q. Yu, Q. Li, J. Sun and Z. Yuan, 2017. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ., 587-588: 510-521.
CrossRef  |  Direct Link  |  
42:   Wang, Q., X. Hao and F. Qiu, 2009. Situation of seawater desalination applied in engineering and its prospect in the world. Water Resour. Protect., 25: 1-5.
43:   Wang, Q., X. Hao and Y. Cao, 2010. Enriched experiment and endogenous characteristics of polyphosphate-accumulating organisms (PAOs). Acta Sci. Circ., 30: 2405-2413.
44:   Wang, Q., X. Hao and Z. Yuan, 2016. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid. Chemosphere, 144: 1869-1873.
CrossRef  |  Direct Link  |  
45:   Wang, Q., X. Zhou, L. Peng, D. Wang, G.J. Xie and Z. Yuan, 2016. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment. Chemosphere, 150: 152-158.
CrossRef  |  Direct Link  |  
46:   Wang, Q.L., X.D. Hao and Y.L. Cao, 2011. Enriched experiment and endogenous processes of glycogen-accumulating organisms (GAOs). Huan Jing ke Xue Huanjing Kexue, 32: 1034-1041.
Direct Link  |  
47:   Wei, W., Q. Wang, A. Li, J. Yang, F. Ma, S. Pi and D. Wu, 2016. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior mechanism assessment. Sci. Rep., Vol. 6. 10.1038/srep31575.
CrossRef  |  
48:   Xie, G.J., B.F. Liu, J. Ding, D. Xing, Q. Wang and N.Q. Ren, 2015. Enhanced hydrogen production by photofermentative microbial aggregation induced by L-cysteine: The effect of substrate concentration, C/N ratio and agitation rate. RSC Adv., 5: 91120-91126.
CrossRef  |  
49:   Xie, G.J., B.F. Liu, Q. Wang, J. Ding and N.Q. Ren, 2016. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production. Water Res., 93: 56-64.
CrossRef  |  Direct Link  |  
50:   Zhang, T., Q. Wang, J. Khan and Z. Yuan, 2015. Free nitrous acid breaks down extracellular polymeric substances in waste activated sludge. RSC Adv., 5: 43312-43318.
CrossRef  |  Direct Link  |  
51:   Zhang, T., Q. Wang, L. Ye and Z. Yuan, 2016. Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chem. Eng. J., 290: 31-36.
CrossRef  |  Direct Link  |  
52:   Zhang, T., Q. Wang, L. Ye and Z. Yuan, 2016. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment. J. Ind. Microbiol. Biotechnol., 43: 713-717.
CrossRef  |  Direct Link  |  
53:   Zhang, T., Q. Wang, L. Ye, D. Batstone and Z. Yuan, 2015. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Sci. Rep., Vol. 5. 10.1038/srep16631.
CrossRef  |  
54:   Zhao, J., Y. Liu, B. Ni, Q. Wang and D. Wang et al., 2016. Combined effect of free nitrous acid pretreatment and sodium dodecylbenzene sulfonate on short-Chain fatty acid production from waste activated sludge. Sci. Rep., Vol. 6. 10.1038/srep21622.
CrossRef  |  
55:   Zhou, X., G. Jiang, Q. Wang and Z. Yuan, 2014. A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Adv., 4: 50644-50652.
CrossRef  |  
56:   Zhou, X., G. Jiang, Q. Wang and Z. Yuan, 2015. Role of indigenous iron in improving sludge dewaterability through peroxidation. Sci. Rep., Vol. 5. 10.1038/srep07516.
CrossRef  |  
57:   Zhou, X., G. Jiang, T. Zhang, Q. Wang, G.J. Xie and Z. Yuan, 2015. Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Bioresour. Technol., 192: 817-820.
CrossRef  |  Direct Link  |  
58:   Zhou, X., Q. Wang and G. Jiang, 2015. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresour. Technol., 182: 267-271.
CrossRef  |  Direct Link  |  
59:   Zhou, X., Q. Wang, G. Jiang, P. Liu and Z. Yuan, 2015. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresour. Technol., 185: 416-420.
CrossRef  |  Direct Link  |  
60:   Zhou, X., Q. Wang, G. Jiang, X. Zhang and Z. Yuan, 2014. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresour. Technol., 174: 103-107.
CrossRef  |  Direct Link  |