Hi, I am Guochang Wu, My LiveDNA is 86.379
 
   
  Home
 
 
 
Dr. Guochang Wu
 
Highest Degree: Ph.D. in Wavelet from Xi'an Jiaotong University, China
 
Institute: Henan University of Finance and Economics, China
 
Area of Interest: Computer Sciences
  •   Wavelet
  •   Sampling Theory
  •   Compressing Sensing
  •   Applied Mathematics and Computation
 
URL: http://livedna.org/86.379
 
My SELECTED Publications
1:   Guochang, W., Z. Yadong and Y. Xiaohui, 2010. Sampling theory: From shannon sampling theorem to compressing sampling. Inform. Technol. J., 9: 1231-1235.
CrossRef  |  Direct Link  |  
2:   Li, D. and G. Wu, 2009. Construction of A Class of Daubechies Type Wavelet Bases. Chaos, Solitons Fractals, 42: 620-625.
CrossRef  |  Direct Link  |  
3:   Li, D., G. Wu and X. Yang, 2011. Unified Conditions for Wavelet Frames. Georgian Math. J., 18: 761-776.
CrossRef  |  Direct Link  |  
4:   Li, D., G. Wu and X. Zhang, 2011. Two sufficient conditions in frequency domain for Gabor frames. Applied Math. Lett., 24: 506-511.
CrossRef  |  Direct Link  |  
5:   Li, R. and G. Wu, 2009. The orthogonal interpolating balanced multiwavelet with rational coefficients. Chaos Solitons Fractals, 41: 892-899.
CrossRef  |  Direct Link  |  
6:   Liu, H.J., F. Boqin and W. Guochang, 2008. The compactly supported cardinal orthogonal vector-valued wavelets with dilation factor a. Applied Math. Comput., 205: 309-316.
CrossRef  |  Direct Link  |  
7:   Liu, Z., G. Hu and G. Wu, 2009. Frame Scaling Function Sets and Frame Wavelet Sets in Rd. Chaos, Solitons Fractals, 40: 2483-2490.
CrossRef  |  Direct Link  |  
8:   Liu, Z., G. Hu, G. Wu and B. Jiang, 2008. Semi-Orthogonal Frame Wavelets and Parseval Frame Wavelets Associated with GMRA. Chaos, Solitons Fractals, 38: 1449-1456.
PubMed  |  
9:   Liu, Z., G. Wu and X. Yang, 2010. Frames and sampling theorems in multiwavelet subspaces. J. Applied Math. Inform., 28: 723-737.
Direct Link  |  
10:   Liu, Z., Y. Ren and G. Wu, 2012. Orthogonal Frames and Their Dual Frames in L2 (Rd). J. Inf. Comput. Sci., 9: 1329-1336.
11:   Wu, G. and D. Li, 2014. Characterizations of the multivariate wave packet systems. Taiwanese J. Math., 18: 1389-1409.
Direct Link  |  
12:   Wu, G. and H. Xiao, 2010. Parseval Frame Multiwavelets Associated with A-FMRA. J. Comput. Inf. Syst., 6: 1943-1950.
13:   Wu, G. and Y. Zhang, 2012. Reproducing Systems Generated by Finite Functions. Inf. Technol. J., 11: 666-672.
CrossRef  |  Direct Link  |  
14:   Wu, G., D. Li and H. Cao, 2014. Necessary conditions and sufficient conditions of the wave packet frames in L2(Rn). Bull. Malaysian Math. Sci. Soc., 37: 1124-1136.
Direct Link  |  
15:   Wu, G., P. Liu and Z. Cheng, 2011. Classifying Parseval Frame Multiwavelets in Higher Dimensions. J. Inf. Comput. Sci., 8: 2799-2806.
16:   Wu, G., Y. Zhang and Z. Cheng, 2009. The cardinal orthogonal scaling function in higher dimension. Inform. Technol. J., 8: 393-397.
CrossRef  |  Direct Link  |  
17:   Wu, G., Z. Cheng, D. Li and F. Zhang, 2008. Parseval frame wavelets associated with A-FMRA. Chaos, Solitons Fractals, 37: 1233-1243.
CrossRef  |  Direct Link  |  
18:   Wu, G.C., D.F. Li and H.M. Xiao, 2010. The M-band cardinal orthogonal scaling function. Applied Math. Comput., 215: 3271-3279.
CrossRef  |  Direct Link  |  
19:   Wu, G.C., L. Zhanwei and Y. Xiaohui, 2009. MRA parseval frame wavelets and their multipliers in L2(Rn). Math. Problems Eng., 2009: 1-17.
CrossRef  |  Direct Link  |  
20:   Wu, G.C., Z.Q. Li and Z.X. Cheng, 2009. Construction of wavelets with composite dilations. Chaos, Solitons and Fractals, 40: 2447-2456.
CrossRef  |  Direct Link  |  
21:   Wu, G.C., Z.X. Cheng and X.H. Yang, 2007. The cardinal orthogonal scaling function and sampling theorem in the wavelet subspaces. Applied Math. Comput., 194: 199-214.
CrossRef  |  Direct Link  |  
22:   Zhu, X. and G. Wu, 2009. A Characteristic Description of Orthonormal Wavelet on Subspace L2E (R) of L2 (R). Chaos, Solitons Fractals, 41: 2484-2490.
CrossRef  |  Direct Link  |  
23:   Zhu, X.and G. Wu, 2010. A note on some equalities for frames in Hilbert spaces. Applied Math. Lett., 23: 788-790.
CrossRef  |  Direct Link  |