Dr. Xinhua  Qi
My Social Links

Dr. Xinhua Qi

Professor
Agro-Environmental Protection Institute, China


Highest Degree
Ph.D. in Environmental Science and Engineering from Nankai University, China

Share this Profile

Biography

Dr. Xinhua Qi is currently working as Professor at Agro-Environmental Protection Institute (AEPI), The Ministry of Agriculture. His research interest focused on several issues such as environmental chemistry, advanced oxidation techniques for wastewater treatment, biomass conversion into value-added materials and chemicals. In past he worked as Lecturer, Associate Professor and Professor at College of Environmental Science and Engineering, Nankai University, Postdoctoral Fellow at Research Center of Supercritical Fluid Technology, Tohoku University, Japan. He is member of editorial board such as The Scientific World Journal, Chinese Journal of Engineering. Dr. Xinhua Qi received honors include The Japan Science and Promotion Society, Post-doctoral Research Fellowship, Young Researcher Recognition Award, 1st-Class Award for Natural Science of the Ministry of Education, 1st-Class Award for S&T Advancement. He has published (61) research papers in journals, (10) books and book chapters and (11) papers in conferences.

Area of Interest:

Environmental Sciences
100%
Environmental Chemistry
62%
Wastewater Treatment
90%
Advanced Oxidation Processes
75%
Chemical
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Qi, X., N. Liu and Y. Lian, 2015. Carbonaceous microspheres prepared by hydrothermal carbonization of glucose for direct use in catalytic dehydration of fructose. RSC Adv., 5: 17526-17531.
    CrossRef  |  Direct Link  |  
  2. Luo, J., Z. Fang, R.L. Smith Jr. and X. Qi, 2015. Fundamentals of Acoustic Cavitation in Sonochemistry. In: Production of Biofuels and Chemicals with Ultrasound, Fang, Z., R.L. Smith Jr. and X. Qi (Eds.). Springer-Verlag, Heidelberg, Berlin, ISBN: 978-94-017-9623-1, pp: 3-33.
  3. Fang, Z., R.L. Smith Jr. and X. Qi, 2015. Production of Biofuels and Chemicals with Ultrasound. Springer-Verlag, Heidelberg, Berlin, ISBN: 978-94-017-9623-1, Pages: 358.
  4. Fang, Z., R.L. Smith Jr. and X. Qi, 2015. Production of Biofuels and Chemicals with Microwave. Springer-Verlag, Heidelberg, Berlin, ISBN: 978-94-017-9611-8, Pages: 271.
  5. Yan, L., N. Liu, Y. Wang, H. Machida and X. Qi, 2014. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst. Bioresour. Technol., 173: 462-466.
    CrossRef  |  Direct Link  |  
  6. Tan, T., L. Yan, Y. Lian and X. Qi, 2014. Adsorption of reactive brilliant red K-2BP on amino-functionalized carbon materials prepared from hydrothermal carbonization of glucose. Chin. J. Environ. Eng., 8: 4122-4128.
  7. Qi, X., Y. Lian, L. Yan and R.L. Smith Jr., 2014. One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal. Commun., 57: 50-54.
    CrossRef  |  Direct Link  |  
  8. Qi, X., L. Li, Y. Wang, N. Liu and R.L. Smith Jr., 2014. Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material. Chem. Eng. J., 256: 407-414.
    CrossRef  |  Direct Link  |  
  9. Lian, Y., L. Yan, Y. Wang and X. Qi, 2014. One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of fructose for cellulose hydrolysis. Acta Chimica Sinica, 72: 502-507.
  10. Lian, F., B. Sun, Z. Song, L. Zhu, X. Qi and B. Xing, 2014. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J., 248: 128-134.
    CrossRef  |  Direct Link  |  
  11. Ishida, K., S. Matsuda, M. Watanabe, H. Kitajima and A. Kato et al., 2014. Hydrolysis of cellulose to produce glucose with solid acid catalysts in 1-butyl-3-methyl-imidazolium chloride ([bmIm][Cl]) with sequential water addition. Biomass Convers. Biorefinery, 4: 323-331.
    CrossRef  |  Direct Link  |  
  12. Qi, X., R.L. Smith Jr. and Z. Fang, 2013. Production of Versatile Platform Chemical 5-Hydroxymethylfurfural from Biomass in Ionic Liquids. In: Production of Biofuels and Chemicals with Ionic Liquids, Fang, Z., R.L. Smith Jr. and X.H. Qi (Eds.). Springer-Verlag, Heidelberg Berlin, ISBN: 978-94-007-7710-1, pp: 223-254.
  13. Qi, X., L. Li, T. Tan, W. Chen and R.L. Smith Jr., 2013. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose. Environ. Sci. Technol., 47: 2792-2798.
    CrossRef  |  Direct Link  |  
  14. Guo, H., Y. Lian, L. Yan, X. Qi and R.L. Smith, 2013. Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chem., 15: 2167-2174.
    CrossRef  |  Direct Link  |  
  15. Fang, Z., R.L. Smith Jr. and X. Qi, 2013. Production of Biofuels and Chemicals with Ionic Liquids. Springer-Verlag, Heidelberg, Berlin, ISBN: 978-94-007-7710-1, Pages: 353.
  16. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2012. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures. Bioresour. Technol., 109: 224-228.
    CrossRef  |  Direct Link  |  
  17. Qi, X., H. Guo, L. Li and R.L. Smith Jr., 2012. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem, 5: 2215-2220.
    CrossRef  |  Direct Link  |  
  18. Guo, H., X. Qi, L. Li and R.L. Smith Jr., 2012. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour. Technol., 116: 355-359.
    CrossRef  |  Direct Link  |  
  19. Xu, Y., X. Qi, H. Guo and L. Li, 2011. Preparation of 5-hydroxymethylfurfural from glucose in ionic liquid. Chem. Ind. Eng. Prog., 30: 552-556.
    Direct Link  |  
  20. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2011. Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process. Cellulose, 18: 1327-1333.
    CrossRef  |  Direct Link  |  
  21. Qi, X., L. Li and H. Guo, 2011. Preparation of 5-hydroxymethylfurfural from fructose in acidic ionic liquids. J. Rare Earths, 29: 173-176.
  22. Qi, X., H. Guo and L. Li, 2011. Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind. Eng. Chem. Res., 50: 7985-7989.
    CrossRef  |  Direct Link  |  
  23. Xiong, M., X. Qi, Y. Xu, W. Gu and Y. Zhuang, 2010. Study on the photocatalysis degradation performance of reactive brilliant X-3B over S-doped titanium dioxide. Chin. J. Environ. Eng., 4: 1208-1212.
  24. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2010. Fast transformation of glucose and Di-/Polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem, 3: 1071-1077.
    CrossRef  |  Direct Link  |  
  25. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2010. Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chem., 12: 1855-1860.
    CrossRef  |  Direct Link  |  
  26. Du, F., X. Qi, Y. Xu and Y. Zhuang, 2010. Catalytic conversion of fructose to 5-hydroxymethylfurfural by ion-exchange resin in ionic liquid. Chem. J. Chin. Univ., 31: 548-552.
    Direct Link  |  
  27. Zhong, Y., X. Jin, R. Qiao, X. Qi and Y. Zhuang, 2009. Destruction of microcystin-RR by Fenton oxidation. J. Hazard. Mater., 167: 1114-1118.
    CrossRef  |  Direct Link  |  
  28. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2009. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal. Commun., 10: 1771-1775.
    CrossRef  |  Direct Link  |  
  29. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2009. Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem., 11: 1327-1331.
    CrossRef  |  Direct Link  |  
  30. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2009. Efficient catalytic conversion of fructose into 5‐hydroxymethylfurfural in ionic liquids at room temperature. ChemSusChem, 2: 944-946.
    CrossRef  |  Direct Link  |  
  31. Geng, B., Z. Jin, T. Li and X. Qi, 2009. Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci. Total Environ., 407: 4994-5000.
    CrossRef  |  Direct Link  |  
  32. Geng, B., Z. Jin and T. Li and X. Qi, 2009. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere, 75: 825-830.
    CrossRef  |  Direct Link  |  
  33. Geng, B., T.L. Li, Z.H. Jin and X.H. Qi, 2009. Synthesis of chitosan-stabilized nanoscale zero-valent iron for removal of hexavalent chromium from surface water. Chem. J. Chin. Univ., 30: 796-799.
    Direct Link  |  
  34. Zhao, Y., X. Qi, L. He and Y. Zhuang, 2008. Green process for synthesis of propylene carbonate. Chem. World, 11: 696-696.
  35. Wang, P., C. Wang, X. Qi, Z. Jin and Y. Zhuang, 2008. Hydrolysis of cellulose to levulinic acid catalyzed by SO42-/TiO2. Modern Chem. Ind., 28: 491-491.
  36. Wang, C., X. Qi, P. Wang, W. Gu and Y. Zhuang, 2008. The application of supercritical fluids technology in waste tyres treatment. Tianjin Chem. Ind., 22: 35-37, (In Chinese).
  37. Wang, C., P. Wang, X. Qi and Y. Zhuang, 2008. Production of levulinic acid from sucrose catalyzed by ferric chloride. Chem. Ind. Times, 22: 7-9.
  38. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith, 2008. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun., 9: 2244-2249.
    CrossRef  |  Direct Link  |  
  39. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2008. Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Ind. Eng. Chem. Res., 47: 9234-9239.
    CrossRef  |  Direct Link  |  
  40. Qi, X., M. Watanabe, T.M. Aida and R.L. Smith Jr., 2008. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem., 10: 799-805.
    CrossRef  |  Direct Link  |  
  41. Zhao, Y., X. Qi, L. He and Y. Zhuang, 2007. Synthesis of propylene carbonate from CO2 and propylene oxide catalyzed by quaternized chitosan. Petrochem. Technol., 36: 1148-1151.
  42. Zhao, Y., X. Qi, H. Li and Y. Zhuang, 2007. A new method for synthesis of propylene carbonate from CO2. Tianjin Chem. Ind., 21: 18-19, (In Chinese).
  43. Zhao, Y., J.S. Tian, X.H. Qi, Z.N. Han, Y.Y. Zhuang and L.N. He, 2007. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A: Chem., 271: 284-289.
    CrossRef  |  Direct Link  |  
  44. Zhao, Y., E. Wang, X. Qi and L. He, 2007. Oxidation reactions of hydrocarbons in supercritical CO2. Fine Chem. Intermed., 37: 1-5, (In Chinese).
  45. Wang, P., X. Qi, C. Wang, Z. Jin and Y. Zhuang, 2007. Progress of research on cellulose hydrolysis saccharification in supercritical water. Tianjin Chem. Ind., 21: 1-3, (In Chinese).
  46. Qiao, R.P., X.H. Qi, C.L. Sun, Y.Y. Zhuang and N. Li, 2007. Removal of microcystin-LR by fenton oxidation. Environ. Chem., 26: 614-617, (In Chinese).
  47. Zhao, Y., X. Qi, Z. Han, W. Gu and Y. Zhuang, 2006. Progresses in the processes for the production of dimethyl carbonate. Modern Chem. Ind., 26: 55-58, (In Chinese).
  48. Xu, X., X. Qi and Y. Zhuang, 2006. An introduction on the recycling status of waste tyres. Tianjin Chem. Ind., 20: 1-3, (In Chinese).
  49. Qi, X., Z. Han, Y. Zhuang, Y. Yu and J. Li, 2006. Correlation of structural and photocatalytic degradation rate parameters for dyes. Environ. Pollut. Prev., 28: 652-654, (In Chinese).
  50. Yu, Y., F.P. Du, L.L. Ma, J.L. Li, Y.Y. Zhuang and X.H. Qi, 2005. Synthesis of Cu2O nanowhiskers with CTAB as a template in water-in-oil microemulsion system. Rare Metals, 24: 283-287.
    Direct Link  |  
  51. Qiao, R.P., Y.M. Ma, X.H. Qi, N. Li, X.C. Jin, Q.S. Wang and Y.Y. Zhuang, 2005. Degradation of microcystin-RR by combination of UV/H2O2 technique. Chin. Chem. Lett., 16: 1271-1274.
    Direct Link  |  
  52. Qiao, R.P., X.H. Qi, N. Li, Y.Y. Zhuang and Q.S. Wang, 2005. Kinetic model of the MC-LR degradation by UV/H2O2 process. J. Saf. Environ., 5: 33-36, (In Chinese).
  53. Qiao, R.P., X.H. Qi, N. Li, Y.Y. Zhuang and Q.S. Wang, 2005. Degradation of microcystin-RR in micro-polluted water by UV/H2O2 oxidation. Environ. Protect. Chem. Eng., 25: 21-24, (In Chinese).
  54. Qiao, R.P., N. Li, X.H. Qi, Q.S. Wang and Y.Y. Zhuang, 2005. Removal of microcystin-LR by UV/H2O2 photocatalytic oxidation. J. Saf. Environ., 5: 46-49 (In Chinese).
  55. Qiao, R.P., N. Li, X.H. Qi, Q.S. Wang and Y.Y. Zhuang, 2005. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon, 45: 745-752.
    CrossRef  |  Direct Link  |  
  56. Qi, X.H., Z.H. Wang, Y.Y. Zhuang, Y. Yu and J.L. Li, 2005. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide. J. Hazard. Mater., 118: 219-225.
    CrossRef  |  Direct Link  |  
  57. Qi, X., Z. Wang, Y. Zhuang, Y. Yu and J. Li, 2005. Photocatalytic degradation kinetics study of reactive brilliant X-3B at different light intensities. Environ. Protect. Chem. Eng., 25: 97-99, (In Chinese).
  58. Ma, L.L., Y. Yu, W.Y. Huang, L.P. Zhu, G.L. Li, Y.Y. Zhuang and X.H. Qi, 2005. Synthesis of Cu2O/CNTs composite by polyol method. Acta Chimica Sinica, 63: 1641-1645.
  59. Qiao, R., X. Qi, Y. Zhuang and Q. Wang, 2004. Green chemistry and soda ash industry in China. Environ. Protect. Chem. Eng., 24: 383-386, (In Chinese).
  60. Qi, X.H., Z.H. Wang, Y.Y. Zhuang, Y. Yu and J. Li, 2004. Studies on the photocatalytic degradation of reactive brilliant red X-3B in water over suspended titanium dioxide. Environ. Protect. Chem. Eng., 24: 1-4, (In Chinese).
  61. Qi, X., Z. Wang and Y. Zhuang, 2004. Study on the photocatalysis performance and degradation kinetics of x-3B over modified titanium dioxide. Environ. Pollut. Control, 26: 84-86, (In Chinese).
  62. Qi, X., Z. Wang and Y. Zhuang, 2003. The analytical techniques used in the study of the photocatalytic degradation of organic pollutants in water. Techniques Equipment Environ. Pollut. Control, 4: 38-43, (In Chinese).
  63. Qi, X.H., Y.Y. Zhuang, Z.H. Wang, Z.T. Hu, L.B. Wu and J.Y. Du, 2002. Studies on the photocatalytic degradation of reactive brilliant red X-3B in water over nanometer titanium dioxide. Urban Environ. Urban Ecol., 15: 14-17, (In Chinese).
  64. Qi, X.H., Y.Y. Zhuang, Y.C. Yuan and W.X. Gu, 2002. Decomposition of aniline in supercritical water. J. Hazard. Mater., 90: 51-62.
  65. Qi, X., Y. Zhuang, Y. Yuan, B. Zhao, W. Gu and T. Zhu, 2001. Oxidation of aniline in supercritical water. Environ. Chem., 20: 432-436, (In Chinese).
  66. Qi, X., Y. Zhuang, K. Yang, Y. Yuan, W. Gu and T. Zhu, 2001. Oxidation of aniline in supercritical water. Environ. Pollut. Control, 23: 56-58, (In Chinese).