Hi, I am Yun-Wei Lin, My LiveDNA is 886.1326
 
   
  Home
 
 
 
Dr. Yun-Wei Lin
 
Highest Degree: Ph.D. in Life Sciences from National Tsing Hua University, Taiwan
 
Institute: National Chiayi University, Taiwan
 
Area of Interest: Pharmacology and Toxicology
  •   DNA Repair
  •   Oncology
  •   Pharmacy
  •   Life Sciences
 
URL: http://livedna.org/886.1326
 
My SELECTED Publications
1:   Chen, R.S., J.Y. Jhan, Y.J. Su, W.T. Lee and C.M. Cheng et al., 2009. Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation. Exp. Cell Res., 315: 2658-2672.
CrossRef  |  PubMed  |  Direct Link  |  
2:   Chuang, S.M., L.H. Wang, J.H. Hong and Y.W. Lin, 2008. Induction of Rad51 protein levels by p38 MAPK decreases cytotoxicity and mutagenicity in benzo[a]pyrene-exposed human lung cancer cells. Toxicol. Appl. Pharmacol., 230: 290-297.
CrossRef  |  PubMed  |  Direct Link  |  
3:   Huang, S., P.J. Chueh, Y.W. Lin, T.S. Shih and S.M. Chuang, 2009. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. Appl. Pharmacol., 241: 182-194.
CrossRef  |  PubMed  |  Direct Link  |  
4:   Ko, J.C., J.H. Hong, L.H. Wang and Y.W. Lin, 2008. The role of repair protein Rad51 in synergistic cytotoxicity and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, IressaR) and benzo[a]pyrene in human lung cancer. Exp. Cell Res., 314: 1881-1891.
CrossRef  |  PubMed  |  Direct Link  |  
5:   Ko, J.C., J.H. Hong, L.H. Wang, C.M. Cheng and S.C. Ciou et al., 2008. Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells. Mol. Cancer Ther., 7: 3632-3641.
CrossRef  |  PubMed  |  Direct Link  |  
6:   Ko, J.C., L.H. Wang, J.Y. Jhan, S.C. Ciou, J.H. Hong, S.T. Lin and Y.W. Lin, 2009. The role of celecoxib in Rad51 expression and cell survival affected by gefitinib in human non-small cell lung cancer cells. Lung Cancer, 65: 290-298.
CrossRef  |  PubMed  |  Direct Link  |  
7:   Ko, J.C., M.S. Tsai, Y.H. Kuo, Y.F. Chiu, S.H. Weng, Y.C. Su and Y.W. Lin, 2010. Modulation of Rad51, ERCC1, and thymidine phosphorylase by emodin result in synergistic cytotoxic effect in combination with capecitabine. Biochem. Pharmacol., 10.1016/j.bcp.2010.12.008.
CrossRef  |  PubMed  |  Direct Link  |  
8:   Ko, J.C., S.C. Ciou, C.M. Cheng, L.H. Wang and J.H. Hong et al., 2008. Involvement of Rad51 in cytotoxicity induced by epidermal growth factor receptor inhibitor (gefitinib, IressaR) and chemotherapeutic agents in human lung cancer cells. Carcinogenesis, 29: 1448-1458.
CrossRef  |  PubMed  |  Direct Link  |  
9:   Ko, J.C., S.C. Ciou, J.Y. Jhan, C.M. Cheng and Y.J. Su et al., 2009. Roles of MKK1/2-ERK1/2 and phosphoinositide 3-kinase-AKT signaling pathways in erlotinib-induced Rad51 suppression and cytotoxicity in human non-small cell lung cancer cells. Mol. Cancer Res., 7: 1378-1389.
CrossRef  |  PubMed  |  Direct Link  |  
10:   Ko, J.C., Y.J. Su, S.T. Lin, J.Y. Jhan and S.C. Ciou et al., 2010. Emodin enhances cisplatin-induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer, 69: 155-164.
CrossRef  |  PubMed  |  Direct Link  |  
11:   Ko, J.C., Y.J. Su, S.T. Lin, J.Y. Jhan, S.C. Ciou, C.M. Cheng and Y.W. Lin, 2010. Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells. Biochem. Pharmacol., 79: 655-664.
CrossRef  |  PubMed  |  Direct Link  |  
12:   Li, J.P., C.Y. Wang, Y.A. Tang, Y.W. Lin and J.L. Yang, 2008. Role of extracellular signal-regulated kinase (ERK) signaling in nucleotide excision repair and genotoxicity in response to As(III) and Pb(II). Pure Appl. Chem., 80: 2735-2750.
Direct Link  |  
13:   Lin, Y.W. and J.L. Yang, 2006. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem., 281: 915-926.
CrossRef  |  PubMed  |  Direct Link  |  
14:   Lin, Y.W., F.J. Yang, C.L. Chen, W.T. Lee and R.S. Chen, 2010. Free radical scavenging activity and antiproliferative potential of Polygonum cuspidatum root extracts. J. Nat. Med., 64: 146-152.
CrossRef  |  PubMed  |  Direct Link  |  
15:   Lin, Y.W., S.M. Chuang and J.L. Yang, 2003. ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J. Biol. Chem., 278: 21534-21541.
CrossRef  |  PubMed  |  Direct Link  |  
16:   Lin, Y.W., S.M. Chuang and J.L. Yang, 2003. Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and anti-mutagenicity. Carcinogenesis, 24: 53-61.
CrossRef  |  PubMed  |  Direct Link  |  
17:   Su, Y.J., M.S. Tsai, Y.H. Kuo, Y.F. Chiu, C.M. Cheng, S.T. Lin and Y.W. Lin, 2010. Role of rad51 down-regulation and extracellular signal-regulated kinases 1 and 2 inactivation in emodin and mitomycin C-induced synergistic cytotoxicity in human non–small-cell lung cancer cells. Mol. Pharmacol., 77: 633-643.
CrossRef  |  PubMed  |  Direct Link  |  
18:   Tsai, M.S., Y.H. Kuo, Y.F. Chiu, Y.C. Su and Y.W. Lin, 2010. Down-regulation of Rad51 expression overcomes drug resistance to gemcitabine in human non-small cell lung cancer cells. J. Pharmacol. Exp. Ther., 335: 830-840.
CrossRef  |  PubMed  |  Direct Link  |  
19:   Wang, C.Y., Y.W. Lin and J.L. Yang, 2008. Activation of protein kinase Calpha signaling prevents cytotoxicity and mutagenicity following lead acetate in CL3 human lung cancer cells. Toxicology, 250: 55-61.
CrossRef  |  PubMed  |  Direct Link  |