Hi, I am Umesh Singh, My LiveDNA is 91.2053
 
   
  Home
 
 
 
Dr. Umesh Singh
 
Highest Degree: Ph.D. in Physical Sciences from Rajasthan University, Jaipur, India
 
Institute: Banaras Hindu University, Varanasi, Uttar Pradesh, India
 
Area of Interest: Statistics
  •   Incompletely Specified Models
  •   Reliability
  •   Stochastic Model
  •   Bayesian Inference
 
URL: http://livedna.org/91.2053
 
My SELECTED Publications
1:   Kumar, A. and S.K. Upadhyay, 2002. Bayes estimator of average life time for normal distribution utilizing point guess. Progress Math., 36: 65-82.
2:   Kumar, A. and S.K. Upadhyay, 2005. Maximum likelihood estimators of the parameter of exponential distribution under multiply type-II censoring. Assam. Stat. Reiv., 19: 30-43.
3:   Kumar, A., 2005. Bayes estimator for one parameter exponential distribution under multiply type-II censoring. Indian J. Math. Math. Sci., 1: 23-33.
4:   Kumar, A., 2007. Estimation of exponential parameter under multiply type II censoring scheme using prior information. Aust. J. Stat., 36: 227-238.
5:   Singh, B.P., S.K. Singh, K.K. Singh and N. Singh, 2007. A batesian analysis of risk of under five mortality in two contrasting state of India. Janasamkhyay, 24-25: 7-15.
6:   Singh, B.P., U. Singh and A. Kumar, 2009. Bayesian estimation of scale parameter of classical pareto distribution under multiply type-II censoring. J. Sci. Res., 53: 147-162.
7:   Singh, P.K., S.K. Singh and U. Singh, 2008. Bayes estimator of inverse gaussian parameters under general entropy loss function using lindley's approximation. Commun. Stat. Simulation Comput., 37: 1750-1762.
CrossRef  |  Direct Link  |  
8:   Singh, R., S.K. Singh and G.P. Singh, 2009. Bayes estimators of generalized expontial parameters under general entropy loss function using lindley`s approximation. Stat. Trans. New Series, 10: 109-127.
9:   Singh, R., S.K. Singh and R.D. Singh, 2009. Bayes estimator of weibull parameters using lindley's approximation under general entropy loss function J. Sci. Res., 53: 127-145.
10:   Singh, R., S.K. Singh, U. Singh and G.P. Singh, 2008. Bayes estimator of generalized exponential parameters under LINEX loss function using lindley's approximation. Data Sci. J., 7: 65-75.
11:   Singh, S.K. and P.K. Singh, 2006. Bayes estimator of gamma parameter under general entropy loss function using lindley`s. J. Ravishankar Univ., 18: 83-96.
12:   Singh, S.K. and P.K. Singh, 2007. Bayes estimator of gamma parameter under general entropy loss function using lindley`s approximation. J. Ravishankar Univ., 20: 87-104.
13:   Singh, S.K., P.K. Singh, S.K Upadhyay and R.D. Singh, 2008. Bayes estimator of weibull parameters under general entropy loss function. J. Sci. Res., 52: 249-262.
14:   Singh, S.K., U. Singh and G.P. Singh, 2011. Model selection and bayes estimates of the parameter for distribution of waiting time to first birth. Int. J. Curr. Res., 3: 091-095.
Direct Link  |  
15:   Singh, U. and A. Kumar, 2005. Shrinkage estimators for the exponential scale parameter under multiply type-II censoring. Aust. J. Stat., 34: 39-49.
Direct Link  |  
16:   Singh, U. and D. Kumar, 2011. Estimation of parameters and reliability function of exponentiated exponential distribution: Bayesian approach under general entropy loss function. Pak. J. Stat. Oper. Res. 7: 199-206.