Hi, I am Sankunny Mohan Karuppayil, My LiveDNA is 91.23831
 
   
  Home
 
 
 
Dr. Sankunny Mohan Karuppayil
 
Highest Degree: Ph.D. in Plant Sciences from Annamalai Unversity, India
 
Institute: Swami Ramanand Teerth Marathwada University, India
 
Area of Interest: Plant and Soil Sciences
  •   Plant Biology
  •   Plant Biotechnology
  •   Medicinal Plant
  •   Mycology
 
URL: http://livedna.org/91.23831
 
My SELECTED Publications
1:   Ali, A., A. Jadhav, P. Jangid, R. Patil, A. Shelar and S.M. Karuppayil, 2018. The human muscarinic acetylcholine receptor antagonist, Dicyclomine targets signal transduction genes and inhibits the virulence factors in the human pathogen, Candida albicans. J. Antibiotics, 71: 456-466.
CrossRef  |  Direct Link  |  
2:   Ali, A., A. Wakharde and S.M. Karuppayil, 2017. Rrp9 as a potential novel antifungal target in Candida albicans: Evidences from in silico studies. Med. Mycol. Open Access, Vol. 3. 10.4172/2167-7972.100026.
CrossRef  |  Direct Link  |  
3:   Bansode, B.S., A.K. Jadhav, N.V. Ghule, D. Phule, R. Srinivas, G. Shankar and S.M. Karuppayil, 2016. Analysis of phytochemical profile and antibiofilm activity of stem bark extract of Terminalia arjuna Wt & Arn against the human pathogen Candida albicans. J. Pharmacogn. Phytochem., 5: 345-356.
Direct Link  |  
4:   Chauhan, N.M., J.S. Raut and S.M. Karuppayil, 2011. A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses, 54: e697-e703.
CrossRef  |  Direct Link  |  
5:   Chauhan, N.M., R.B. Shinde and S.M. Karuppayil, 2013. Alcohols as potential signaling molecules for disseminative mode of growth in Candida albicans. Braz. J. Microbiol., 44: 1315-1320.
6:   Deokar, A.A., V. Kondawar, D. Kohli, M. Aslam and P.K. Jain et al., 2015. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct. Integr. Genomics, 15: 27-46.
CrossRef  |  Direct Link  |  
7:   Deokar, A.A., V. Kondawar, P.K. Jain, S.M. Karuppayil and N.L. Raju et al., 2011. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol., Vol. 11. 10.1186/1471-2229-11-70.
CrossRef  |  Direct Link  |  
8:   Deshmukh, K.B., A.P. Pathak and S.M. Karuppayil, 2011. Bacterial diversity of Lonar soda lake of India. Indian J. Microbiol., 51: 107-111.
9:   Devkatte, A.N., G.B. Zore and S.M. Karuppayil, 2005. Potential of plant oils as inhibitors of Candida albicans growth. FEMS Yeast Res., 5: 867-873.
CrossRef  |  PubMed  |  Direct Link  |  
10:   Doke, S.K., J.S. Raut, S.C. Dhawale and S.M. Karuppayil, 2014. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J. Gen. Applied Microbiol., 60: 163-168.
CrossRef  |  Direct Link  |  
11:   Goswami, R.R., S.D. Pohare, J.S. Raut and S.M. Karuppayil, 2017. Cell surface hydrophobicity as a virulence factor in Candida albicans. Biosci. Biotechnol. Res. Asia, 14: 1503-1511.
CrossRef  |  Direct Link  |  
12:   Halbandge, S.D., P.B. Vidyasagar and S.M. Karuppayil, 2017. Saccharomyces cerevisiae as a Model for Space Biology. In: Yeast Diversity in Human Welfare, Satyanarayana, T. and G. Kunze (Eds.). Springer, Singapore, pp: 25-92.
13:   Halbandge, S.D., S.P. Mortale and S.M. Karuppayil, 2017. Biofabricated silver nanoparticles synergistically activate amphotericin B against mature biofilm forms of Candida albicans. Open Nanomed. J., 4: 1-16.
CrossRef  |  Direct Link  |  
14:   Halbandge, S.D., S.P. Mortale, A.K. Jadhav, K. Kharat and S.M. Karuppayil, 2017. Differential sensitivities of various growth modes of Candida albicans to sixteen molecules of plant origin. J. Pharmacogn. Phytochem., 6: 306-318.
Direct Link  |  
15:   Jadhav, A., B. Bansode, D. Phule, S. Shelar and R. Patil et al., 2017. The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting. World J. Microbiol. Biotechnol., Vol. 33. 10.1007/s11274-017-2264-z.
CrossRef  |  Direct Link  |  
16:   Jadhav, A., S. Mortale, S. Halbandge, P. Jangid and R. Patil et al., 2017. The dietary food components capric acid and caprylic acid inhibit virulence factors in Candida albicans through multitargeting. J. Med. Food, 20: 1083-1090.
CrossRef  |  Direct Link  |  
17:   Jadhav, A.K. and S.M. Karuppayil, 2017. Candida albicans Biofilm as a Clinical Challenge. In: Developments in Fungal Biology and Applied Mycology, Satyanarayana, T., S. Deshmukh and B. Johri (Eds.). Springer, Singapore, pp: 247-264.
18:   Jadhav, A.K. and S.M. Karuppayil, 2017. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b. In Silico Pharmacol., Vol. 5. 10.1007/s40203-017-0024-2.
CrossRef  |  Direct Link  |  
19:   Jadhav, A.K., P. Jangid, R. Patil, W. Gade, K. Kharat and S.M. Karuppayil, 2017. Phenazine methosulphate modulating the expression of genes involved in yeast to hyphal form signal transduction in Candida albicans. Adv. Microbiol., 7: 707-718.
CrossRef  |  Direct Link  |  
20:   Kakkar, S., S.M. Karuppayil, J.S. Raut, F. Giansanti, L. Papucci, N. Schiavone and I.P. Kaur, 2015. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int. J. Pharm., 495: 276-289.
CrossRef  |  Direct Link  |  
21:   Karuppayil, S.M. and P.J. Szaniszlo, 1997. Importance of calcium to the regulation of dimorphism in Wangiella (Exophiala) dermatitidis. Med. Mycol., 35: 379-388.
22:   Karuppayil, S.M. and T. Govindarajulu, 1986. Permeability alterations in chickpea wilt. Bull. Pure Applied Sci. 53: 46-50.
23:   Karuppayil, S.M., E. Moran and G. Das, 1998. Differential regulation of p53 dependent and independent PCNA gene transcription by 12S E1A oncoprotein requires CBP. J. Biol. Chem., 273: 17303-17306.
24:   Karuppayil, S.M., M. Peng, L. Mendoza, T.A. Levins and P.J. Szaniszlo, 1996. Identification of the conserved coding sequences of three chitin synthase genes in Fonsecaea pedrosoi. Med. Mycol., 34: 117-125.
25:   Karuppayil, S.M., N. Thamizhseran and T. Govindarajalu, 1986. Release of phenols from chickpea seeds. Int. Chickpea News Lett., 14: 24-25.
26:   Kathwate, G.H. and S.M. Karuppayil, 2013. Antifungal properties of the anti-hypertensive drug: Aliskiren. Arch. Oral Biol., 58: 1109-1115.
CrossRef  |  Direct Link  |  
27:   Kathwate, G.H. and S.M. Karuppayil, 2016. Tramadol, an opioid receptor agonist: An inhibitor of growth, morphogenesis and biofilm formation in the human pathogen, Candida albicans. Assay Drug Dev. Technol., 14: 567-572.
CrossRef  |  Direct Link  |  
28:   Kathwate, G.H., R.B. Shinde and S.M. Karuppayil, 2015. Antiepileptic drugs inhibit growth, dimorphism and biofilm mode of growth in human pathogen Candida albicans. Assay Drug Dev. Technol., 13: 307-312.
CrossRef  |  Direct Link  |  
29:   Khan, A.A.H. and S.M. Karuppayil, 2010. Potential natural disinfectants for indoor environments. Int. J. Clin. Aromatherapy, 7: 1-5.
30:   Khan, A.A.H. and S.M. Karuppayil, 2011. Practices contributing to biotic pollution in Air-conditioned indoor environments. Aerobiologia, 27: 85-89.
CrossRef  |  Direct Link  |  
31:   Khan, A.A.H. and S.M. Karuppayil, 2012. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci., 19: 405-426.
CrossRef  |  Direct Link  |  
32:   Khan, A.A.H., S.M. Karuppayil, C. Manoharachary, I.K. Kunwar and S. Waghray, 2009. Isolation, identification and testing for allergenicity of fungi from air-conditioned indoor environments. Aerobiologia, 25: 119-123.
CrossRef  |  Direct Link  |  
33:   Lambat, P., G.B. Zore, B.S. Surwase and S.M. Karuppayil, 2004. Antifungal activity in essential oils from lemon grass and eucalyptus. J. Mycol. Plant Pathol., 34: 545-547.
34:   Liu, W., S.D. Konduri, S. Bansal, B.K. Nayak and S.A. Rajasekaran et al., 2006. Estrogen receptor-α binds p53 tumor suppressor protein directly and represses its function. J. Biol. Chem., 281: 9837-9840.
CrossRef  |  Direct Link  |  
35:   Mangulkar, M.P., M.M. Routh, R.B. Shinde and S.M. Karuppayil, 2012. Ethnic uses of medicinal plants for gynecological care from thirty eight villages of India. Asian J. Tradit. Med., 7: 195-205.
36:   Manke, M.B., J.S. Raut, S.C. Dhawale and S.M. Karuppayil, 2015. Antifungal activity of Helicteres isora Linn. fruit extracts against planktonic and biofilm growth of Candida albicans. J. Biol. Active Prod. Nat., 5: 357-364.
CrossRef  |  Direct Link  |  
37:   Mendoza, L., S.M. Karuppayil and P.J. Szaniszlo, 1993. Calcium regulates in vitro dimorphism in chromoblastomycotic fungi. Mycoses, 36: 157-164.
38:   Pathak, A.P., A. Sardar, V. Kadam, B. Rekadwad and S.M. Karuppayil, 2012. Efficacy of some medicinal plants against human dental pathogens. Indian J. Nat. Prod. Resour., 3: 123-127.
39:   Peng, M., S.M. Karuppayil, L. Mendoza, T.A. Levins and P.J. Szaniszlo, 1995. Use of the polymerase chain reaction to identify coding sequences for chitin synthase isozymes in Phialophora verrucosa. Curr. Genet., 27: 517-523.
40:   Rajput, S.B. and S.M. Karuppayil, 2013. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. SpringerPlus, Vol. 2. 10.1186/2193-1801-2-26.
CrossRef  |  
41:   Rajput, S.B. and S.M. Karuppayil, 2013. β-Asarone, an active principle of Acorus calamus rhizome inhibit growth, morphogenesis and ergosterol biosynthesis in Candida albicans. Phytomedicine, 20: 139-142.
42:   Rajput, S.B., M.B. Tonge and S.M. Karuppayil, 2014. An overview on traditional uses and pharmacological profile of Acorus calamus Linn.(Sweet flag) and other Acorus species. Phytomedicine, 21: 268-276.
CrossRef  |  Direct Link  |  
43:   Rajput, S.B., R.B. Shinde, M.M. Routh and S.M. Karuppayil, 2013. Anti-Candida properties of asaronaldehyde of Acorus gramineus rhizome and three structural isomers. Chinese Med., Vol. 8. 10.1186/1749-8546-8-18.
CrossRef  |  Direct Link  |  
44:   Rathod, V.S., J.S. Raut and S.M. Karuppayil, 2012. In vitro antifungal susceptibility reveals occurrence of azole resistance among clinical isolates of Candida albicans. Asian J. Pharm. Clin. Res., 5: 170-173.
Direct Link  |  
45:   Rathod, V.S., J.S. Raut and S.M. Karuppayil, 2012. Antifungal drug susceptibility of Candida albicans isolates from tuberculosis patients. Int. J. Pharm. Pharm. Sci., 4: 323-326.
46:   Rathod, V.S., J.S. Raut, S.S. Raut, S.R. More and S.M. Karuppayil, 2013. Farnesol sensitivity of serum induced yeast to hyphae morphogenesis: A study on fifty clinical isolates of Candida albicans. Br. Microbiol. Res. J., 3: 150-157.
47:   Raut, J., V. Rathod and S.M. Karuppayil, 2010. Cell surface hydrophobicity and adhesion: A study on fifty clinical isolates of Candida albicans. Japanese J. Med. Mycol., 51: 131-136.
CrossRef  |  Direct Link  |  
48:   Raut, J.S. and S.M. Karuppayil, 2014. A status review on the medicinal properties of essential oils. Ind. Crops Prod., 62: 250-264.
CrossRef  |  Direct Link  |  
49:   Raut, J.S. and S.M. Karuppayil, 2014. Bioprospecting of Plant Essential Oils for Medicinal Uses. In: Environment and Sustainable Development, Fulekar, M.H., B. Pathak and R.K. Kale (Eds.). Springer, India, pp: 59-76.
50:   Raut, J.S. and S.M. Karuppayil, 2016. Phytochemicals as inhibitors of Candida biofilm. Curr. Pharm. Des., 22: 4111-4134.
Direct Link  |  
51:   Raut, J.S., B.S. Bansode, A.K. Jadhav and S.M. Karuppayil, Raut, J.S., B.S. Bansode, A.K. Jadhav and S.M. Karuppayil, 2017. Activity of allyl isothiocyanate and its synergy with fluconazole against Candida albicans biofilms. J. Microbiol. Biotechnol., 27: 685-693.
52:   Raut, J.S., N.M. Chauhan, R.B. Shinde and S.M. Karuppayil, 2013. Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine. J. Med. Plants Res., 7: 777-782.
CrossRef  |  Direct Link  |  
53:   Raut, J.S., R.B. Shinde and M.S. Karuppayil, 2012. Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. Afr. J. Microbiol. Res., 6: 6005-6012.
CrossRef  |  Direct Link  |  
54:   Raut, J.S., R.B. Shinde, N.M. Chauhan and S.M. Karuppayil, 2013. Terpenoids of plant origin inhibit morphogenesis, adhesion and biofilm formation by Candida albicans. Biofouling, 29: 87-96.
CrossRef  |  Direct Link  |  
55:   Raut, J.S., R.B. Shinde, N.M. Chauhan and S.M. Karuppayil, 2014. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans. J. Microbiol. Biotechnol., 24: 1216-1225.
CrossRef  |  
56:   Raut, J.S., S.B. Rajput, R.B. Shinde, B.S. Surwase and S.M. Karuppayil, 2013. Vanillin inhibits growth, morphogenesis and biofilm formation by Candida albicans. J. Biol. Active Prod. Nat., 3: 130-138.
CrossRef  |  Direct Link  |  
57:   Raut, J.S., S.K. Doke and S.M. Karuppayil, 2017. Yeast Biofilms in the Context of Human Health and Disease. In: Yeast Diversity in Human Welfare, Satyanarayana, T. and G. Kunze (Eds.). Springer, Singapore, pp: 137-162.
58:   Routh, M.M., J.S. Raut and S.M. Karuppayil, 2011. Dual properties of anticancer agents: an exploratory study on the in vitro anti-candida properties of thirty drugs. Chemotherapy, 57: 372-380.
CrossRef  |  Direct Link  |  
59:   Routh, M.M., N.M. Chauhan and S.M. Karuppayil, 2013. Anticancer drugs inhibit morphogenesis in Candida albicans. Braz. J. Microbiol., 44: 855-859.
60:   Routh, M.M., N.M. Chauhan, S.B. Rajput and S.M. Karuppayil, 2014. Cancer drugs inhibit germ tube elongation in Candida albicans. J. Scient. Res. Rep., 3: 97-109.
61:   Routh, M.M., S.B. Rajput, J.S. Raut and S.M. Karuppayil, 2013. Anticancer drugs as enhancers of fluconazole sensitivity in Candida albicans. Afr. J. Microbiol. Res., 7: 1253-1261.
CrossRef  |  Direct Link  |  
62:   Shinde, R.B., J.S. Raut and S.M. Karuppayil, 2012. Biofilm formation by Candida albicans on various prosthetic materials and its fluconazole sensitivity: A kinetic study. Mycoscience, 53: 220-226.
CrossRef  |  Direct Link  |  
63:   Shinde, R.B., J.S. Raut, N.M. Chauhan and S.M. Karuppayil, 2013. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz. J. Infect. Dis., 17: 395-400.
CrossRef  |  Direct Link  |  
64:   Shinde, R.B., N.M. Chauhan, J.S. Raut and S.M. Karuppayil, 2012. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann. Clin. Microbiol. Antimicrob., Vol. 11. 10.1186/1476-0711-11-27.
CrossRef  |  Direct Link  |  
65:   Shinde, R.B., S.B. Rajput, J.S. Raut and S.M. Karuppayil, 2013. An in vitro repositioning study reveals antifungal potential of chloroquine to inhibit growth and morphogenesis in Candida albicans. J. Gen. Applied Microbiol., 59: 167-170.
CrossRef  |  Direct Link  |  
66:   Surwase, B.S., A.R. Kulkarni, S.N. Pathan and S.M. Karuppayil, 2001. Physico-chemical properties of tuber starch and cultivation practices of Ceropegia bulbosa var. bulbosa-A common NTFP of Maharashtra. Ann. For., 9: 128-139.
67:   Surwase, B.S., G.B. Zore and S.M. Karuppayil, 2003. Anti-fungal properties of Taverneira cunefolia. J. Med. Aromatic Plant Sci., 25: 682-688.
68:   Szaniszlo, P.J., L. Mendoza and S.M. Karuppayil, 1993. Clues About Chromoblastomycotic Fungi and other Dematiaceous Pathogens Using Wangiella as a Model. In: Dimorphic Fungi in Biology and Medicine, Bossche, H.V., D. Kerridge and F.C. Odds (Eds.). Plenum Press, New York, pp: 241-255.
69:   Szaniszlo, P.J., S.M. Karuppayil, L. Mendoza and R.J. Rennard, 1993. Cell cycle regulation of polymorphism in Wangiella dermatitidis. Arch. Med. Res., 24: 251-261.
70:   Thakre, A., G. Zore, S. Kodgire, R. Kazi and S. Mulange et al., 2017. Limonene inhibits Candida albicans growth by inducing apoptosis. Med. Mycol. 10.1093/mmy/myx074.
CrossRef  |  Direct Link  |  
71:   Thakre, A.D., S.V. Mulange, S.S. Kodgire, G.B. Zore and S.M. Karuppayil, 2016. Effects of cinnamaldehyde, ocimene, camphene, curcumin and farnesene on Candida albicans. Adv. Microbiol., 6: 627-643.
CrossRef  |  Direct Link  |  
72:   Wakharde, A.A., S.D. Halbandge, D.B. Phule and S.M. Karuppayil, 2018. Anticancer drugs as antibiofilm agents in Candida albicans: Potential targets. Assay Drug Dev. Technol. 10.1089/adt.2017.826.
CrossRef  |  Direct Link  |  
73:   Wankhede, S.B., M.M. Routh, S.B. Rajput and S.M. Karuppayil, 2013. Antifungal properties of selected plants of Apocynaceae family against the human fungal pathogen Candida albicans. Int. Curr. Pharm. J., 2: 122-125.
Direct Link  |  
74:   Zore, G. and S.M. Karuppayil, 2016. Pharmacological Studies on Taverniera cuneifolia (Roth) Arn: A Substitute for Commercial Liquorice. LAP LAMBERT Academic Publishing, Germany, ISBN-13: 978-3-659-93583-1, Pages: 212.
75:   Zore, G.B., A.D. Thakre, S. Jadhav and S.M. Karuppayil, 2011. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 18: 1181-1190.
CrossRef  |  Direct Link  |  
76:   Zore, G.B., A.D. Thakre, V. Rathod and S.M. Karuppayil, 2011. Evaluation of anti‐Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: Inhibition of growth, dimorphism and sensitization. Mycoses, 54: e99-e109.
CrossRef  |  Direct Link  |  
77:   Zore, G.B., B.S. Surwase and S.M. Karuppayil, 2004. Antifungal activity in two medicinal plants. J. Mycol. Plant Pathol., 34: 543-544.
78:   Zore, G.B., U.B. Winston, B.S. Surwase, N.S. Meshram, V.D. Sangle, S.S. Kulkarni and S.M. Karuppayil, 2008. Chemoprofile and bioactivities of Taverniera cuneifolia (Roth) Arn.: A wild relative and possible substitute of Glycyrrhiza glabra L. Phytomedicine, 15: 292-300.
CrossRef  |  Direct Link  |  
79:   Zore, G.B., V. Awad, A.D. Thakare, U.K. Halde, N.S. Mesharam, B.S. Surwase and S.M. Karuppayil, 2007. Activity-directed fractionation and isolation of four antibacterial compounds from Abrus precatorius L. roots. Nat. Prod. Res., 21: 933-940.
80:   hauhan, N.M., J.S. Raut and S.M. Karuppayil, 2011. Acetaldehyde inhibits yeast to hyphal form morphogenesis and biofilm formation in Candida albicans. Mycoscience, 52: 356-360.