Dr. Ram Prakash  Sharma
My Social Links

Dr. Ram Prakash Sharma

Professor
JECRC University, India


Highest Degree
Ph.D. in Mathematics from University of Rajasthan, Jaipur, India

Share this Profile

Area of Interest:

Mathematics
100%
Modeling Simulation
62%
Computational Fluid Dynamics
90%
Boundary Element Method
75%
Heat and Mass Transfer
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
42
Abstracts
0

Selected Publications

  1. Sharma, R.P., S.R. Mishra, S. Tinker and B.K. Kulshrestha, 2023. Exploration of radiative and dissipative heat on Williamson nanofluid flow in conjunction with convective boundary condition. J. Nanofluids, 12: 223-230.
    CrossRef  |  Direct Link  |  
  2. Sharma, R.P., S.R. Mishra, S. Tinker and B.K. Kulshrestha, 2022. Radiative heat transfer of hybrid nanofluid flow over an expanding surface with the interaction of joule effect. J. Nanofluids, 11: 745-753.
    CrossRef  |  Direct Link  |  
  3. Sharma, R.P., S.R. Mishra, S. Tinker and B.K. Kulshrestha, 2022. Effect of non-linear thermal radiation and binary chemical reaction on the Williamson nanofluid flow past a linearly stretching sheet. Int. J. Appl. Comput. Math., Vol. 8. 10.1007/s40819-022-01362-w.
    CrossRef  |  Direct Link  |  
  4. Sharma, R.P., O. Prakash, S.R. Mishra and P.S. Rao, 2022. Hall current effect on molybdenum disulfide (MoS2)-engine oil (EO) based MHD nanofluid flow in a moving plate. Int. J. Ambient Energy, 43: 6201-6209.
    CrossRef  |  Direct Link  |  
  5. Sharma, R.P., O. Prakash, I. Rashidi, S.R. Mishra, P.S. Rao and F. Karimi, 2022. Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction. Eur. Phys. J. Plus, Vol. 137. 10.1140/epjp/s13360-022-02359-6.
    CrossRef  |  Direct Link  |  
  6. Sharma, R.P., D. Gorai and K. Das, 2022. Comparative study on hybrid nanofluid flow of Ag–CuO/H2O over a curved stretching surface with Soret and Dufour effects. Heat Transfer, 51: 6365-6383.
    CrossRef  |  Direct Link  |  
  7. Sharma, R.P. and S. Shaw, 2022. MHD non-newtonian fluid flow past a stretching sheet under ‎the influence of non-linear radiation and viscous dissipation. J. Appl. Comput. Mech., 8: 949-961.
    CrossRef  |  Direct Link  |  
  8. Munjam, S.R. and R.P. Sharma, 2022. The novel techniques used on convective motion in a permeable media due to a vertical surface under the effect of heat source. Int. J. Ambient Energy, 43: 2595-2605.
    CrossRef  |  Direct Link  |  
  9. Jena, S., S.R. Mishra and R.P. Sharma, 2022. Effect of chemical reaction and thermal radiation on bio-magnetic viscoelastic fluid flow embedded in a porous medium. Indian J. Pure Appl. Phys., 60: 996-1003.
    CrossRef  |  Direct Link  |  
  10. Gopalakrishnan, K.S., I.S. Oyelakin, S. Mondal and R.P. Sharma, 2022. Impact of Joule heating and nonlinear thermal radiation on the flow of Casson nanofluid with entropy generation. Int. J. Ambient Energy, 43: 5687-5710.
    CrossRef  |  Direct Link  |  
  11. Saranya, S., P. Ragupathi, B. Ganga, R.P. Sharma and A.A. Hakeem, 2018. Non-linear radiation effects on magnetic/non-magnetic nanoparticles with different base fluids over a flat plate. Adv. Powder Technol., 29: 1977-1990.
    CrossRef  |  Direct Link  |  
  12. Gaur, P.K., R.P. Sharma and A.K. Jha, 2018. Transient free convective radiative flow between vertical parallel plates heated/cooled asymmetrically with heat generation and slip condition. Int. J. Applied Mech. Eng., 23: 365-384.
    CrossRef  |  Direct Link  |  
  13. Gaur, P.K., A.K. Jha and R.P. Sharma, 2018. MHD flow of a polar fluid through a porous medium of variable permeability bounded by horizontal parallel plates. Acta Tech. CSAV, 63: 99-110.
  14. Swapna, Y., S.V.K. Verma, M.C. Raju and R.P. Sharma, 2017. Mass transfer effects on MHD mixed convective periodic Flow through porous medium in an inclined channel with transpiration cooling and thermal radiation. JNANABHA, 47: 195-206.
  15. Swapna, Y., S.V.K. Verma, M.C. Raju and R.P. Sharma, 2017. Chemical reaction and thermal effect on MHD mixed convective oscillatory flow through a porous medium bounded by two vertical porous plates. JNANABHA, 47: 218-228.
  16. Swapna, Y., M.C. Raju, R.P. Sharma and S.V.K. Varma, 2017. Magnetohydrodynamic (MHD) mixed convective periodic flow through porous medium in a rotating channel. J. Ultra Sci. Phys. Sci., 29: 302-311.
  17. Swapna, Y., M.C. Raju, R.P. Sharma and S.V.K. Varma, 2017. Chemical reaction, thermal radiation and injection/suction effects on MHD mixed convective oscillatory flow through a porous medium bounded by two vertical porous plates. Bull. Cal. Math. Soc., 109: 189-210.
  18. Singh, J., D. Kumar, R. Swroop and R.P. Sharma, 2017. An efficient computational approach for linear and nonlinear fractional differential equations. Waves Wavelets Fractals, 3: 1-13.
    CrossRef  |  
  19. Sharma, R.P., V. Ravikumar, M.C. Raju, G.S.S. Raju and S.V.K. Varma, 2017. Rotational impact on unsteady MHD double diffusive boundary layer flow over an impulsively emerged vertical porous plate. J. Int. Acad. Phys. Sci., 20: 303-317.
    Direct Link  |  
  20. Sharma, R.P., S.R. Mishra, D. Kumar and J. Singh, 2017. A hybrid computational approach for steady flow of walters B fluid in a vertical channel with porous wall. GANITA, 67: 89-98.
  21. Sharma, R.P., P.V.S.N. Murthy and D. Kumar, 2017. Transient free convection MHD flow of a nanofluid past a vertical plate with radiation in the presence of heat generation. J. Nanofluids, 6: 80-86.
    CrossRef  |  Direct Link  |  
  22. Sharma, R.P., M. Jain, S.R. Munjam and D. Kumar, 2017. Effects of Ohmic dissipation and chemical reaction on MHD free convection flow through porous medium with thermal radiation. J. Ultra Sci. Phys. Sci., 29: 315-326.
  23. Sharma, R.P., K. Avinash, N. Sandeep and O.D. Makinde, 2017. Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect Diffusion Forum, 377: 242-259.
    CrossRef  |  Direct Link  |  
  24. Sharma, R.P., 2017. Slip and chemical reaction effects on MHD natural convection flow past a vertical channel under the influence of radiation and heat source through porous medium. GANITA, 67: 117-127.
  25. Sharma, R.P. and S.R. Mishra, 2017. A mathematical model of MHD micropolar fluid flow with thermal-diffusion and diffusion-thermo effects. J. Int. Acad. Phys. Sci., 20: 273-292.
    Direct Link  |  
  26. Sandeep, N., R.P. Sharma and M. Ferdows, 2017. Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles. J. Mol. Liquids, 234: 437-443.
    CrossRef  |  Direct Link  |  
  27. Munjam, S.R. and R.P. Sharma, 2017. Homotopy solution for magnetohydrodynamic 3-D flow of nanofluid over a shrinking sheet in the presence of thermal radiation. Math. Today, 33: 75-87.
    Direct Link  |  
  28. Mishra, S.R., B. Nayak and R.P. Sharma, 2017. MHD stagnation-point flow past over a stretching sheet in the presence of non-darcy porous medium and heat source/sink. Defect Diffusion Forum, 374: 92-105.
    CrossRef  |  Direct Link  |  
  29. Kumar, D., J. Choi, J. Singh and R.P. Sharma, 2017. Numerical solution of nonlinear fractional camassa-holm equation. Far East J. Math. Sci., 101: 125-135.
  30. Krishna, P.M., R.P. Sharma and N. Sandeep, 2017. Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows. Nuclear Eng. Technol., 49: 1654-1659.
    CrossRef  |  Direct Link  |  
  31. Krishna, P.M., N. Sandeep, R.P. Sharma and O.D. Makinde, 2017. Thermal radiation effect on 3D slip motion of AlCu-water and Cu-water nanofluids over a variable thickness stretched surface. Defect Diffusion Forum, 377: 141-154.
    CrossRef  |  Direct Link  |  
  32. Krishna, P.M., N. Sandeep and R.P. Sharma, 2017. Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects. Eur. Phys. J. Plus, Vol. 132. 10.1140/epjp/i2017-11469-9.
    CrossRef  |  
  33. Das, S., A. Sensharma, R.N. Jana and R.P. Sharma, 2017. Stability of nanofluid flow through a vertical channel with wall thermal conductance and radiation. J. Nanofluids, 6: 680-691.
    CrossRef  |  Direct Link  |  
  34. Das, S., A. Sensharma, R.N. Jana and R.P. Sharma, 2017. Slip flow of nanofluid past a vertical plate with ramped wall temperature considering thermal radiation. J. Nanofluids, 6: 1054-1064.
    CrossRef  |  Direct Link  |  
  35. Das, K., R.P. Sharma and P.R. Duari, 2017. Hydromagnetic rarefied fluid flow over a wedge in the presence of surface slip and thermal radiation. Int. J. Applied Mech. Eng., 22: 827-837.
    CrossRef  |  Direct Link  |  
  36. Sharma, R.P., M. Jain and D. Kumar, 2016. Analysis of nonlinear Blasius equation to boundary layer flow over a flat plate. Indian J. Theor. Phys., 64: 13-26.
  37. Kumar, D. and R.P. Sharma, 2016. Numerical approximation of Newell-Whitehead-Segel equation of fractional order. Nonlinear Eng., 5: 81-86.
    CrossRef  |  
  38. Gaur, P.K., R.P. Sharma and A.K. Jha, 2016. Radiative fluid flow over a non-linearly stretching sheet in porous medium with chemical reaction. Indian J. Theor. Phys., 64: 67-79.
  39. Gaur, P.K., A.K. Jha and R. Sharma, 2016. Magneto-polar fluid flow through a porous medium of variable permeability in slip flow regime. Int. J. Applied Mech. Eng., 21: 323-339.
    CrossRef  |  Direct Link  |  
  40. Das, S., R.N. Jana, R.P. Sharma and O.D. Makinde, 2016. MHD nanofluid flow and heat transfer in ekman layer on an oscillating porous plate. J. Nanofluids, 5: 968-981.
    CrossRef  |  Direct Link  |  
  41. Das, K., R.P. Sharma and A. Sarkar, 2016. Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet. J. Comput. Design Eng., 3: 330-336.
    CrossRef  |  Direct Link  |  
  42. Sharma, R.R. and A.K. Jha, 2012. Magnetohydrodynamic flow of a viscous electrically conducting fluid through a porous medium induced by a rotating disk with suction. Indian J. Theor. Phys., 60: 83-92.
    Direct Link  |  
  43. Sharma, R.R. and A.K. Jha, 2012. Heat transfer in MHD micropolar fluid flow past a vertical plate in slip-flow regime. Mapana-J. Sci., 11: 179-191.
    CrossRef  |  Direct Link  |  
  44. Sharma, R.P., 2012. Unsteady MHD flow through a straight duct filled with porous material. Indian J. Theor. Phys., 60: 165-170.
  45. Sharma, R.P. and A. Sharma, 2011. An analytical study of curriculum of mathematics implemented by NCERT under the plan NCF-2005. Int. J. Math. Model. Simulations Applic., 5: 84-89.
  46. Sharma, P.R., Y.N. Gaur and R.P. Sharma, 2005. Steady laminar flow and heat transfer of a non-Newtonian fluid through a straight horizontal porous channel in the presence of heat source. Ind. J. Theor. Phys., 53: 37-47.
  47. Sharma, P.R., Y.N. Gaur and R.P. Sharma, 2004. Unsteady MHD flow and heat transfer over a continuous porous moving horizontal surface in the presence of an oscillating free stream and heat source. J. Ind. Acad. Math., 26: 105-114.
  48. Sharma, P.R., R.P. Sharma, U. Mishra, N. Kumar and Y.N. Gaur, 2004. Unsteady flow and heat transfer of a viscous incompressible fluid between parallel porous plates with heat source/sink. Applied Sci. Periodical, 6: 97-109.
  49. Sharma, P.R., R.P. Sharma, N. Kumar, U. Mishra and Y.N. Gaur, 2004. Unsteady MHD flow and heat transfer along a horizontal porous plate in the presence of heat source and periodic free stream. Indian J. Theor. Phys., 52: 11-18.
    Direct Link  |  
  50. Sharma, P.R., Y.N. Gaur and R.P. Sharma, 2003. Unsteady MHD flow and heat transfer along a continuous porous moving vertical porous surface in the presence of an oscillating free stream and heat source. Ultra Sci. Phys. Sci., 15: 323-330.
  51. Sharma, P.R., Y.N. Gaur and R.P. Sharma, 2003. Ohmic dissipation effect on unsteady free convective MHD flow past an infinite hot vertical porous surface of variable temperature. J. Nat. Acad. Math. India, 17: 21-33.
  52. Gaur, Y.N., P.R. Sharma and R.P. Sharma, 2003. Mean flow and Mean temperature of a non-Newtonian fluid along a porous moving vertical plate in the presence of oscillating free stream. Ultra Sci. Phys. Sci., 15: 103-108.