Hi, I am Hazi Mohammad Azamathulla, My LiveDNA is 91.263
 
   
  Home
 
 
 
Dr. Hazi Mohammad Azamathulla
 
Highest Degree: Ph.D. in Civil Engineering from IIT Bombay, India
 
Institute: National Taiwan University of Science and Technology, Taiwan
 
Area of Interest: Engineering
  •   Hydraulic Engineering
  •   Evolutionary Computation
  •   Hydraulic Structures
  •   Hydroinformatics
 
URL: http://livedna.org/91.263
 
My SELECTED Publications
1:   Ahmad, Z. and H.M. Azamathulla, 2012. Direct solution for discharge in circular free overfall. J. Hydrol., 446-447: 116-120.
CrossRef  |  Direct Link  |  
2:   Ahmad, Z. and H.M. Azamathulla, 2012. Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 456: 151-155.
CrossRef  |  Direct Link  |  
3:   Ahmad, Z. and H.M. Azamathulla, 2012. Reply to the comments on: Direct solution for discharge in circular free overfall. J. Hydrol., 466-467: 446-447.
4:   Ahmad, Z. and H.M. Azamathulla, 2012. Response to comment on Quasi-theoretical end-depth-discharge relationship for trapezoidal channels. J. Hydrol., 477: 265-266.
CrossRef  |  Direct Link  |  
5:   Ahmad, Z., H.M. Azamathulla and N.A. Zakaria, 2011. ANFIS-based approach for the estimation of transverse mixing coefficient. Water Sci. Technol., 63: 1005-1010.
CrossRef  |  Direct Link  |  
6:   Ayoubloo, M.K., H.M. Azamathulla, E. Jabbari and J. Mahjoobi, 2011. Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows. Expert Syst. Applic., 38: 10114-10123.
7:   Ayoubloo, M.K., H.M. Azamathulla, Z. Ahmad, A.A. Ghani, J. Mahjoobi and A. Rasekh, 2011. Prediction of the scour depth below spillways applying different soft computing techniques. Comput. Applic., 33: 92-97.
Direct Link  |  
8:   Azamathulla, H.M. and A. Zahiri, 2012. Flow discharge prediction in compound channels using linear genetic programming. J. Hydrol., 454-455: 203-207.
CrossRef  |  Direct Link  |  
9:   Azamathulla, H.M. and A.A. Ghani, 2010. ANFIS-based approach for predicting the scour depth at culvert outlet. J. Pipeline Syst. Eng. Pract., 2: 35-40.
CrossRef  |  Direct Link  |  
10:   Azamathulla, H.M. and A.A. Ghani, 2010. Genetic programming to predict river pipeline J. Pipeline Syst. Eng. Pract., 1: 127-132.
CrossRef  |  Direct Link  |  
11:   Azamathulla, H.M. and A.A. Ghani, 2011. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resour. Manage., 25: 1537-1544.
CrossRef  |  Direct Link  |  
12:   Azamathulla, H.M. and A.A.M. Haque, 2013. Knowledge extraction from trained neural network scour model at culvert outlets. Neural Comput. Applic., 23: 2137-2141.
CrossRef  |  Direct Link  |  
13:   Azamathulla, H.M. and F.C. Wu, 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Comput., 11: 2902-2905.
CrossRef  |  Direct Link  |  
14:   Azamathulla, H.M. and M.A. Haque, 2012. Prediction of scour depth at culvert outlets using gene-expression programming. Int. J. Innov. Comput. Inform. Control, 8: 5045-5054.
15:   Azamathulla, H.M. and M.A.M. Yusoff, 2013. Soft computing for prediction of river pipeline scour depth. Neural Comput. Applic., 23: 2465-2469.
CrossRef  |  Direct Link  |  
16:   Azamathulla, H.M. and N.A. Zakaria, 2010. Appraisals of soft computing techniques in prediction of spillway scour depth. Dam Eng., 21: 189-202.
17:   Azamathulla, H.M. and N.A. Zakaria, 2011. Prediction of scour below submerged pipeline crossing a river using ANN. Water Sci. Technol., 63: 2225-2230.
CrossRef  |  Direct Link  |  
18:   Azamathulla, H.M. and R.D. Jarrett, 2013. Use of gene-expression programming to estimate manning's roughness coefficient for high gradient streams. Water Resour. Manage., 27: 715-729.
CrossRef  |  Direct Link  |  
19:   Azamathulla, H.M. and S.N. Londhe, 2004. Discussion on Behaviour of non-linear flow and application of neural network in converging boundaries by P.R.M. Rao and N.B.P. Reddy. J. Hydraulic Eng., 10: 77-77.
20:   Azamathulla, H.M. and Z. Ahmad, 2012. GP approach for critical submergence of intakes in open channel flows. J. Hydroinformatics, 14: 937-943.
CrossRef  |  Direct Link  |  
21:   Azamathulla, H.M. and Z. Ahmad, 2012. Gene-expression programming for transverse mixing coefficient. J. Hydrol., 434-435: 142-148.
CrossRef  |  Direct Link  |  
22:   Azamathulla, H.M. and Z. Ahmad, 2013. Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. J. Pipeline Syst. Eng. Pract., 4: 131-137.
CrossRef  |  Direct Link  |  
23:   Azamathulla, H.M. and Z. Ahmad, 2014. Closure to estimation of critical velocity for slurry transport through pipeline using adaptive Neuro-fuzzy interference system and Gene-expression programming by H. Md. Azamathulla and Z. Ahmad. J. Pipeline Syst. Eng. Practice, Vol. 6. .
Direct Link  |  
24:   Azamathulla, H.M., 2012. Comment on Reverse level pool routing: Comparison between a deterministic and a stochastic Approach by Marco D'Oria, Paolo Mignosa, Maria Giovanna Tanda. Journal of Hydrology, accepted for publication (27 July 2012); doi: http://dx. doi. org/10.1016/j. jhydrol. 2012.07. 045. J. Hydrol., 470-471: 328-328.
CrossRef  |  Direct Link  |  
25:   Azamathulla, H.M., 2012. Gene expression programming for prediction of scour depth downstream of sills. J. Hydrol., 460-461: 169-172.
CrossRef  |  Direct Link  |  
26:   Azamathulla, H.M., 2012. Gene-expression programming to predict scour at a bridge abutment. J. Hydroinformatics, 14: 324-331.
CrossRef  |  Direct Link  |  
27:   Azamathulla, H.M., 2013. Comment on Evaluation of selected equations for predicting scour at downstream of ski-jump spillway using laboratory and field data by C. Kumar and P. Sreeja. Eng. Geol., 152: 210-211.
28:   Azamathulla, H.M., 2013. Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Comput. Applic., 23: 1421-1426.
CrossRef  |  Direct Link  |  
29:   Azamathulla, H.M., 2015. Discussion of Orifice spillway aerator: Hydraulic design by V.V. Bhosekar, V. Jothiprakash and P.B. Deolalikar. J. Hydraul. Eng., Vol. 141. 10.1061/(ASCE)HY.1943-7900.0000932.
CrossRef  |  Direct Link  |  
30:   Azamathulla, H.M., A. Guven and Y.K. Demir, 2011. Linear genetic programming to scour below submerged pipeline. Ocean Eng., 38: 995-1000.
CrossRef  |  Direct Link  |  
31:   Azamathulla, H.M., A.A. Ghan, N.A. Zakaria, C.K. Chang and Z.A. Hassan, 2010. Genetic programming approach to predict sediment concentration for Malaysian rivers. Int. J. Ecol. Econ. Stat., 16: 53-64.
Direct Link  |  
32:   Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2009. ANFIS-based approach to predicting scour location of spillway. Water Manage., 162: 399-407.
CrossRef  |  Direct Link  |  
33:   Azamathulla, H.M., A.A. Ghani and N.A. Zakaria, 2010. Prediction of scour around hydraulic structure using soft computing technique. Malaysian J. Civil Eng., 22: 53-65.
Direct Link  |  
34:   Azamathulla, H.M., A.A. Ghani and S.Y. Fei, 2012. ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Comput., 12: 1227-1230.
CrossRef  |  Direct Link  |  
35:   Azamathulla, H.M., A.A. Ghani, C.K. Chang, Z.A. Hasan and N.A. Zakaria, 2010. Machine learning approach to predict sediment load-a case study. Clean-Soil Air Water, 38: 969-976.
CrossRef  |  Direct Link  |  
36:   Azamathulla, H.M., A.A. Ghani, C.S. Leow, C.K. Chang and N.A. Zakaria, 2011. Gene-expression programming for the development of a stage-discharge curve of the Pahang river. Water Resour. Manage., 25: 2901-2916.
CrossRef  |  Direct Link  |  
37:   Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2009. Genetic programming to predict river pipeline scour. J. Hydr. Eng., 165: 1-5.
38:   Azamathulla, H.M., A.A. Ghani, N.A. Zakaria and A. Guven, 2010. Genetic programming to predict bridge pier scour. J. Hydr. Eng., 136: 165-169.
CrossRef  |  Direct Link  |  
39:   Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, C.C. Kiat and L.C. Siang, 2008. Knowledge extraction from trained neural network scour models. Modern Applied Sci., 2: 52-62.
Direct Link  |  
40:   Azamathulla, H.M., A.A. Ghani, N.A. Zakaria, S.H. Lai, C.K. Chang, C.S. Leow and Z. Abuhasan, 2008. Genetic programming to predict ski-jump bucket spill-way scour. J. Hydrodynamics Ser. B, 20: 477-484.
CrossRef  |  Direct Link  |  
41:   Azamathulla, H.M., C.C. Yong, A.A. Ghani and C.K. Chang, 2013. Suspended sediment load prediction of river systems: GEP approach. Arabian J. Geosci., 6: 3469-3480.
CrossRef  |  Direct Link  |  
42:   Azamathulla, H.M., C.K. Chang, A.A. Ghani, J. Ariffin, N.A. Zakaria and Z.A. Hasan, 2009. An ANFIS-based approach for predicting the bed load for moderately sized rivers. J. Hydro-Environ. Res., 3: 35-44.
CrossRef  |  Direct Link  |  
43:   Azamathulla, H.M., F.C. Wu, A.A. Ghani, S.M. Narulkar, N.A. Zakaria and C.K. Chang, 2008. Comparison between genetic algorithm and linear programming approach for real time operation. J. Hydro-Environ. Res., 2: 172-181.
CrossRef  |  
44:   Azamathulla, H.M., M.A.M. Yusoff and Z.A. Hasan, 2014. Scour below submerged skewed pipeline. J. Hydrol., 509: 615-620.
CrossRef  |  Direct Link  |  
45:   Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2006. Estimation of scour below spillways using neural networks. J. Hydr. Res., 44: 61-69.
CrossRef  |  Direct Link  |  
46:   Azamathulla, H.M., M.C. Deo and P.B. Deolalikar, 2008. Alternative neural networks to estimate the scour below spillways. Adv. Eng. Software, 39: 689-698.
CrossRef  |  Direct Link  |  
47:   Azamathulla, H.M., M.C. Deo, M.R. Bhajantri and P.B. Deolalikar, 2004. Scour at the base of flip-bucket spillways. ISH J. Hydraulic Eng., 10: 121-129.
CrossRef  |  Direct Link  |  
48:   Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. An expert system for predicting manning's roughness coefficient in open channels by using gene expression programming. Neural Comput. Applic., 23: 1343-1349.
CrossRef  |  Direct Link  |  
49:   Azamathulla, H.M., Z. Ahmad and A.A. Ghani, 2013. Computation of discharge through side sluice gate using gene-expression programming. Irrig. Drain., 62: 115-119.
CrossRef  |  Direct Link  |  
50:   Azmathullah, H.Md., M.C. Deo and P.B. Deolalikar, 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. J. Hydraulic. Eng., 131: 898-908.
CrossRef  |  Direct Link  |  
51:   Chang, C.K., H.M. Azamathulla, N.A. Zakaria and A.A. Ghani, 2012. Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers. J. Earth Syst. Sci., 121: 125-133.
CrossRef  |  Direct Link  |  
52:   Dehghani, A.A., H.M. Azamathulla, S.F.H. Najafi and S.A. Ayyoubzadeh, 2013. Local scouring around L-head groynes. J. Hydrol., 504: 125-131.
CrossRef  |  Direct Link  |  
53:   Ghani, A.A. and H.M. Azamathulla, 2010. Gene-expression programming for sediment transport in sewer pipe systems. J. Pipeline Syst. Eng. Pract., 2: 102-106.
CrossRef  |  Direct Link  |  
54:   Ghani, A.A. and H.M. Azamathulla, 2013. Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Comput. Applic., 24: 271-276.
CrossRef  |  Direct Link  |  
55:   Ghani, A.A., H.M. Azamathulla, C.K. Chang, N.A. Zakaria and Z.A. Hasan, 2011. Prediction of total bed material load for rivers in Malaysia: A case study of Langat, Muda and Kurau Rivers. Environ. Fluid Mech., 11: 307-318.
CrossRef  |  Direct Link  |  
56:   Ghani, A.A., H.M. Azamathulla, T.L. Lau, C.H. Ravikanth, N.A. Zakaria, C.S. Leow and M.A.M. Yusof, 2011. Flow pattern and hydraulic performance of the REDAC gross pollutant trap. Flow Measurement Instrum., 22: 215-224.
CrossRef  |  Direct Link  |  
57:   Guven, A. and H.M. Azamathulla, 2012. Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol., 65: 1982-1987.
CrossRef  |  Direct Link  |  
58:   Guven, A., A. Aytek and H.M. Azamathulla, 2013. A practical approach to formulate stage-discharge relationship in natural rivers. Neural Comput. Applic., 23: 873-880.
CrossRef  |  Direct Link  |  
59:   Guven, A., H.M. Azamathulla and M. Gunal, 2012. Comparative study of predicting scour around a circular pile. Maritime Eng., 165: 31-40.
60:   Guven, A., H.M. Azamathulla and N.A. Zakaria, 2009. Linear genetic programming for prediction of circular pile scour. Ocean Eng., 36: 985-991.
CrossRef  |  Direct Link  |  
61:   Hasan, Z.A., K.H. Lee, H.M. Azamathulla and A.A. Ghani, 2011. Flow simulation for lake Harapan using CCHE2D-a case study. Int. J. Model. Simulat., 31: 85-89.
CrossRef  |  Direct Link  |  
62:   Khan, M., H.M. Azamathulla and M. Tufail, 2012. Gene-expression programming to predict Pier scour depth using Laboratory data. J. Hydroinformatics, 14: 628-645.
CrossRef  |  Direct Link  |  
63:   Khan, M., H.M. Azamathulla and M. Tufail, 2014. Closure to discussion Bridge pier scour by gene expression programming by C. Neil and D. Andres. Water Manage., 167: 368-369.
64:   Khan, M., H.M. Azamathulla, M. Tufail and A.A. Ghani, 2013. Bridge pier scour prediction by gene expression programming. Proc. ICE-Water Manage., 165: 481-493.
CrossRef  |  Direct Link  |  
65:   Khodashenas, S.R., R. Roshan, H. Sarkardeh and H.M. Azamathulla, 2010. Vortex study at orifice spillways of Karun III dam. Dam Eng., 21: 131-142.
66:   Madadi, M.R., H.M. Azamathulla and M. Yakhkeshi, 2014. Application of Google earth to investigate the change of flood inundation area due to flood detention dam. Earth Sci. Inform., (In Press) 10.1007/s12145-014-0197-8.
CrossRef  |  Direct Link  |  
67:   Maghsoodi, R., M.S. Roozgar, H. Sarkardeh and H.M. Azamathulla, 2012. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul., 32: 237-243.
CrossRef  |  Direct Link  |  
68:   Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2012. Prediction of equilibrium scour time around long abutments. Proc. ICE-Water Manage., 166: 394-401.
CrossRef  |  Direct Link  |  
69:   Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Estimation of dimension and time variation of local scour at short abutment. Int. J. River Basin Manage., 11: 121-135.
CrossRef  |  Direct Link  |  
70:   Mohammadpour, R., A.A. Ghani and H.M. Azamathulla, 2013. Numerical modeling of 3-D flow on porous broad crested weirs. Applied Math. Model., 37: 9324-9337.
CrossRef  |  Direct Link  |  
71:   Najafzadeh, M. and H.M. Azamathulla, 2013. Group method of data handling to predict scour depth around bridge piers. Neural Comput. Applic., 23: 2107-2112.
CrossRef  |  Direct Link  |  
72:   Najafzadeh, M. and H.M. Azamathulla, 2013. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. J. Comput. Civil Eng. 10.1061/(ASCE)CP.1943-5487.0000376.
CrossRef  |  Direct Link  |  
73:   Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2013. GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Res., 40: 35-41.
CrossRef  |  Direct Link  |  
74:   Najafzadeh, M., G.A. Barani and H.M. Azamathulla, 2014. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput. Applic., 24: 629-635.
CrossRef  |  Direct Link  |  
75:   Roshan, R., H.M. Azamathulla, M. Marosi, H. Sarkardeh, H. Pahlavan and A.A. Ghani, 2010. Hydraulics of stepped spillways with different numbers of steps. Dams Reservoirs, 20: 131-136.
Direct Link  |  
76:   Salamasi, F. and H.M. Azamathulla, 2013. Determination of optimum relaxation coefficient using finite difference method for groundwater flow. Arabian J. Geosci., 6: 3409-3415.
CrossRef  |  Direct Link  |  
77:   Samadi, M., E. Jabbari and H.M. Azamathulla, 2014. Assessment of M5' model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Comput. Applic., 24: 357-366.
CrossRef  |  Direct Link  |  
78:   Yazdi, J., H. Sarkardeh, H.M. Azamathulla and A.A. Ghani, 2010. 3D-Simulation of flow around single groyne with free surface. Int. J. River Basin Manage., 8: 55-62.
79:   Yusof, M.F., H.M. Azamathulla and R. Abdullah, 2014. Prediction of soil erodibility factor for peninsular malaysia soil series using ANN. Neural Comput. Applic., 24: 383-389.
CrossRef  |  Direct Link  |  
80:   Zahabiyoun, B., M.R. Goodarzi, A.R.M. Bavani and H.M. Azamathulla, 2013. Assessment of climate change impact on the Gharesou river basin using SWAT hydrological model. Clean-Soil Air Water, 41: 601-609.
CrossRef  |  Direct Link  |  
81:   Zahiri, A. and H.M. Azamathulla, 2014. Comparison between Linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Comput. Applic., 24: 413-420.
CrossRef  |  Direct Link  |  
82:   Zahiri, A., H.M. Azamathulla and S. Bagheri, 2013. Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. J. Hydrol., 480: 162-166.
CrossRef  |  Direct Link  |  
83:   Zahiri, A., X. Tang and H.M. Azamathulla, 2014. Mathematical modeling of flow discharge over compound sharp-crested weirs. J. Hydro-Environ. Res., 8: 194-199.
CrossRef  |  Direct Link  |  
84:   Zakaria, N.A., H.M. Azamathulla, C.K. Chang and A.A. Ghani, 2010. Gene expression programming for total bed material load estimation-a case study. Sci. Total Environ., 408: 5078-5085.
CrossRef  |  Direct Link  |