Hi, I am Parmjit Singh Panesar, My LiveDNA is 91.830
 
   
  Home
 
 
 
Dr. Parmjit Singh Panesar
 
Highest Degree: PostDoc Fellow in Food/Industrial Biotechnology from University of Birmingham, UK
 
Institute: Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
 
Area of Interest: Food Science Technology
  •   Fermentation
  •   Food Enzymes
  •   Immobilization
  •   Whey Utilization
 
URL: http://livedna.org/91.830
 
My SELECTED Publications
1:   Bera, M.B., P.S. Panesar, R. Panesar and B. Singh, 2008. Application of reverse micelle extraction process for amylase recovery using response surface methodology. Bioprocess Biosyst. Eng., 31: 379-384.
PubMed  |  
2:   Kaur, G., P.S. Panesar, M.B. Bera and B. Singh, 2009. Optimization of permeabilization process for lactose hydrolysis in whey using response surface methodology. J. Food Process Eng., 32: 355-368.
CrossRef  |  Direct Link  |  
3:   Kaur, G., P.S. Panesar, M.B. Bera and H. Kumar, 2009. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioprocess Biosyst. Eng., 32: 63-67.
CrossRef  |  
4:   Kennedy, J.F., H. Kumar, P.S. Panesar, S.S. Marwaha, R. Goyal, A. Parmar and S. Kaur, 2006. Enzyme catalyzed regioselective synthesis of sugar esters and related compounds. J. Chem. Technol. Biotechnol., 81: 866-876.
Direct Link  |  
5:   Kennedy, J.F., P.S. Panesar, R. Grover, and S.S. Marwaha, 2006. Continuous methanogenesis of pulp and paper mill effluents using ABR reactor. J. Chem. Technol. Biotechnol., 81: 1277-1281.
Direct Link  |  
6:   Kosseva, M.R., P.S. Panesar, G. Kaur and J.F. Kennedy, 2009. Use of immobilised biocatalysts in the processing of cheese whey. Int. J. Biol. Macromolecules, 45: 437-447.
CrossRef  |  
7:   Kumar, H., P.S. Panesar, R. Panesar, S.S. Marwaha, A. Dua and J.F. Kennedy, 2010. Immobilized Enzymes in Food Processing. In: Enzymes in Food Processing: Fundamentals and Potential Applications, Panesar, P.S., S.S. Marwaha and H.K. Chopra (Eds.). IK International Pvt. Ltd., New Delhi pp: 259-301.
8:   Marwaha, S.S., P.S. Panesar and H. Chopra, 2000. Food Processing Technology: Application of Immobilized Biocatalysts. In: Book: Post Harvest Technology Joshi, V. and L.R. Verma (Eds.). Vol. I, Indus Publications, New Delhi, pp: 417-438.
9:   Nayak, S.K., P.S. Panesar and H. Kumar, 2009. p53-induced apoptosis and inhibitors of p53. Curr. Med. Chem., 16: 2627-2640.
CrossRef  |  
10:   Panesar, P.S. J.F. Kennedy, D.N. Gandhi and K. Bunko, 2007. Bioutilisation of whey for lactic acid production. Food Chem., 105: 1-14.
CrossRef  |  
11:   Panesar, P.S. J.F. Kennedy, D.N. Gandhi and K. Bunko, 2007. Bioutilisation of whey for lactic acid production. Food Chem., 105: 1-14.
CrossRef  |  
12:   Panesar, P.S., 2005. Anaerobic Wastewater Treatment. In: Recent Advances in Water Pollution Research, Trivedy, R.K. (Ed.). Book Enclave, Jaipur pp: 265-276.
13:   Panesar, P.S., 2005. Biotechnology for Wastewater Treatment. In: Recent Advances in Water Pollution Research, Trivedy, R.K. (Ed.). Book Enclave, Jaipur pp: 99-110.
14:   Panesar, P.S., 2007. Kinetic analysis of lactose hydrolysis in milk using Kluyveromyces marxianus cells immobilized by alginate and agar gel entrapment. Int. J. Dairy. Sci., 2: 138-144.
CrossRef  |  Direct Link  |  
15:   Panesar, P.S., 2007. Lactose hydrolysis in whole milk using immobilized Kluyveromyces marxianus cells. Am. J. Food Technol., 2: 288-294.
CrossRef  |  Direct Link  |  
16:   Panesar, P.S., 2008. Application of response surface methodology for maximal lactose hydrolysis in whole milk using permeabilized yeast cells. Acta Alimentaria, 37: 191-208.
CrossRef  |  
17:   Panesar, P.S., 2008. Application of response surface methodology in the permeabilization of yeast cells for lactose hydrolysis. Biochem. Eng. J., 39: 91-96.
CrossRef  |  
18:   Panesar, P.S., 2008. Production of β-D-glactosidase from whey using Kluyveromyces marxianus. Res. J. Microbiol., 3: 24-29.
19:   Panesar, P.S., D. Hasija, M.B. Bera and H. Kumar, 2006. Biosurfactants: Properties and applications. J. Punjab Acad. Sci., 3: 41-49.
20:   Panesar, P.S., H. Kumar and S.S. Marwaha, 2010. Fundamentals of Enzymes. In: Enzymes in Food Processing: Fundamentals and Potential Applications, Panesar, P.S., S.S. Marwaha and H.K. Chopra (Eds.). IK International Pvt. Ltd., New Delhi pp: 1-50.
21:   Panesar, P.S., J.F. Kennedy, C.J. Knill and M. Kosseva, 2007. Applicability of pectate entrapped Lactobacillus casei cells for L(+) lactic acid production from whey. Applied Microbiol. Biotechnol., 74: 35-42.
CrossRef  |  Direct Link  |  
22:   Panesar, P.S., J.F. Kennedy, C.J. Knill and M.R. Kosseva, 2010. Optimization of process parameters for the production of L(+) lactic acid by lactobacillus casei from whey. Brazilian Arch. Biol. Technol., 53: 219-226.
23:   Panesar, P.S., N. Kumar, S.S. Marwaha and V.K. Joshi, 2009. Vermouth production technology: An overview. Nat. Prod. Radiance, 8: 334-344.
Direct Link  |  
24:   Panesar, P.S., R. Panesar and B. Singh, 2009. Application of response surface methodology in the optimization of process parameters for the production of kinnow wine. Nat. Prod. Radiance, 8: 366-373.
Direct Link  |  
25:   Panesar, P.S., R. Panesar, R.S. Singh and M.B. Bera, 2007. Permeabilization of yeast cells with organic solvents for β-galactosidase activity. Res. J. Microbiol., 2: 34-41.
CrossRef  |  Direct Link  |  
26:   Panesar, P.S., R. Panesar, R.S. Singh, J.F. Kennedy and H. Kumar, 2006. Microbial production, immobilization and applications of β-D-galactosidase. J. Chem. Technol. Biotechnol., 81: 530-543.
CrossRef  |  Direct Link  |  
27:   Panesar, P.S., S.S. Marwaha and J.F. Kennedy, 2006. Zymomonas mobilis: An alternative ethanol producer. J. Chem. Technol. Biotechnol., 81: 623-635.
CrossRef  |  
28:   Panesar, P.S., S.S. Marwaha and J.F. Kennedy, 2007. Comparison of ethanol and temperature tolerance of Zymomonas mobilis strain in glucose and molasses medium. Indian J. Biotechnol., 6: 74-77.
29:   Panesar, P.S., S.S. Marwaha and R. Rai, 2000. Evaluation of ethanol production potential of Zymomonas mobilis strains. Asian J. Microbiol. Environ. Biotechnol., 2: 15-19.
30:   Panesar, P.S., S.S. Marwaha, J. Arora and R. Rai, 2000. Fermentative production of cider-ginger beverage. Beverage Food World, 27: 21-22.
31:   Panesar, P.S., Y.V. Chavan, M.B. Bera, O. Chand and H. Kumar, 2009. Evaluation of Acetobacter strain for the production of microbial cellulose. Asian J. Chem., 21: S099-S102.
Direct Link  |  
32:   Panesar, R., P.S. Panesar, D. Hasija and M.B. Bera, 2009. Fermentative potential of Pseudomonas aeruginosa strain for biosurfactant production. Biol. Forum Int. J., 1: 102-105.
33:   Panesar, R., P.S. Panesar, N. Kumar and M.B. Bera, 2010. Evaluation of bacterial strains for biosurfactant production from agro-industrial waste. Asian J. Microbiol. Biotechnol. Environ., 12: 33-38.
34:   Panesar, R., P.S. Panesar, R. S. Singh and M. B. Bera, 2007. Applicability of alginate entrapped yeast cells for the production of lactose hydrolyzed milk. J. Food Process. Eng., 30: 472-484.
CrossRef  |  Direct Link  |  
35:   Panesar, R., P.S. Panesar, R.S. Singh, J.F. Kennedy and M.B. Bera, 2006. Process optimization for β-D-galactosidase production using yeast culture. J. Biol. Sci., 6: 193-197.
36:   Panesar, R., P.S. Panesar, R.S. Singh, J.F. Kennedy and M.B. Bera, 2007. Production of lactose hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem., 101: 786-790.
Direct Link  |  
37:   Panesar, R., P.S. Panesar, S.R. Singh and J.F. Kennedy, 2010. Hydrolysis of milk lactose in a packed bed reactor system using immobilized yeast cells. J. Chem. Technol. Biotechnol., 10.1002/jctb.2481.
CrossRef  |  Direct Link  |  
38:   Panesar, R., R.S. Singh, P.S. Panesar and M.B. Bera, 2005. Cell permeabilization technology and its applications in lactose hydrolysis. Biospectrum, 7: 37-40.
39:   Panesar, R., R.S. Singh, P.S. Panesar and M.B. Bera, 2005. Screening of matrices for the immobilization of yeast cells for lactose hydrolysis. Asian J. Microbiol. Biotechnol. Environ., 7: 319-322.
40:   Sharma, H.K. and P.S. Panesar, 2000. Future potential of reconstituted and recombined milk. Beverage Food World, 27: 24-25.
41:   Sharma, H.K. and P.S. Panesar, 2005. Wastewater Management in Meat Industry. In: Recent Advances in Water Pollution Research, Trivedy, R.K. (Ed.). Book Enclave, Jaipur pp: 91-98.
42:   Singh, B., P.S. Panesar and V. Nanda, 2007. Rehydration kinetics of un-osmosed and pre-osmosed carrot cubes. World J. Dairy Food Sci., 2: 10-17.
43:   Singh, B., P.S. Panesar and V. Nanda, 2008. Optimization of osmotic dehydration process of carrot cubes in sucrose solution. J. Food Process. Eng., 31: 1-20.
Direct Link  |  
44:   Singh, B., P.S. Panesar and V. Nanda, 2008. Osmotic dehydration kinetics of carrot cubes in sodium chloride solution. Int. J. Food Sci. Technol., 43: 1361-1370.
CrossRef  |  
45:   Singh, B., P.S. Panesar and V. Nanda, 2008. Utilization of carrot pomace for the preparation of a value added product. World J. Dairy Food Sci., 1: 22-27.
46:   Singh, B., P.S. Panesar, A.K. Gupta and J.F. Kennedy, 2006. Study of sorption isotherm behaviour of un-osmosed and pre-osmosed carrot cubes. J. Food Process. Preservation, 30: 684-698.
47:   Singh, B., P.S. Panesar, A.K. Gupta and J.F. Kennedy, 2007. Optimization of osmotic dehydration of carrot cubes in sucrose-salt solutions using response surface methodology. Eur. Food Res. Technol., 225: 157-165.
CrossRef  |  Direct Link  |  
48:   Singh, B., P.S. Panesar, V. Nanda and M.B. Bera, 2008. Optimization of osmotic dehydration process of carrot cubes in sodium chloride solution. Int. J. Food Eng., 4: 1-24.
CrossRef  |  Direct Link  |  
49:   Singh, B., P.S. Panesar, V. Nanda, A.K. Gupta and J.F. Kennedy, 2006. Application of response surface methodology for the osmotic dehydration of carrots. J. Food Process. Eng., 29: 592-614.
CrossRef  |  
50:   Thakur, A., P.S. Panesar and H. Kumar, 2006. Trioctylamine enhanced transport of lactic acid using emulsion liquid membrane. J. Punjab Acad. Sci., 3: 33-40.
51:   Thakur, A., P.S. Panesar and M. Singh, 2008. Parametric optimization of lactic acid extraction from aqueous solution in a mixed flow reactor using emulsion liquid membrane by response surface methodology. Chem. Biochem. Eng. Quarterly, 22: 157-167.
Direct Link  |  
52:   Zhang, Y., J.F. Kennedy, C.J. Knill and P.S. Panesar, 2006. Kinetic analysis of beer primary fermentation using yeast cells immobilised by ceramic support adsorption and alginate gel entrapment. Artif. Cells Blood Substit. Immobil. Biotechnol., 34: 395-405.
PubMed  |