Hi, I am Yuval Shaked, My LiveDNA is 972.6347
 
   
  Home
 
 
 
Dr. Yuval Shaked
 
Highest Degree: Ph.D. in Biochemistry from Hadassah University Hospital, Jerusalem, Israel
 
Institute: Israel Institute of Technology, Israel
 
Area of Interest: Biomedical Sciences
  •   Biological Chemistry
  •   Cancer Research
  •   Blood
  •   Stem Cells
 
URL: http://livedna.org/972.6347
 
My SELECTED Publications
1:   Alishekevitz, D. and Y. Shaked, 2011. Therapy-Induced Tumor Angiogenesis and Vasculogenesis can be Blocked by Various Targeted Therapies. In: Klinische Onkologie 2011/2012: Gastroenterologische Und Chirurgische Onkologie, Roth, S.L. (Ed.). Dusseldorf University Press, Germany, pp: 104-110.
2:   Alishekevitz, D., R. Bril, D. Loven, V. Miller and T. Voloshin et al., 2013. Differential therapeutic effects of anti-VEGF-A antibody in different tumor models: implications for choosing appropriate tumor models for drug testing. Mol. Cancer Ther.,. 10.1158/1535-7163.MCT-13-0356.
CrossRef  |  
3:   Benayoun, L. and Y. Shaked, 2013. In vitro enrichment of tumor-initiating cells from human established cell lines. Curr. Protoc. Stem Cell Biol.,. 10.1002/9780470151808.sc0307s24.
CrossRef  |  
4:   Benayoun, L., M. Schaffer, R. Bril, S. Gingis-Velitski and E. Segal et al., 2013. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy. Cancer Biol. Ther., 14: 64-74.
CrossRef  |  
5:   Benayoun, L., S. Gingis-Velitski, T. Voloshin, E. Segal and R. Segev et al., 2012. Tumor-initiating cells of various tumor types exhibit differential angiogenic properties and react differently to antiangiogenic drugs. Stem Cells, 30: 1831-1841.
CrossRef  |  
6:   Bertolini, F., P. Mancuso, L. Benayoun, S. Gingis-Velitski and Y. Shaked, 2012. Chemotherapy-induced circulating bone marrow derived endothelial progenitor cell mobilization in cancer patients. Methods Mol. Biol., 904: 165-172.
7:   Bertolini, F., P. Mancuso, P. Braidotti, Y. Shaked and R.S. Kerbel, 2009. The Contribution of Circulating Endothelial Cells to Tumor Angiogenesis. In: Recent Advances in Angiogenesis and Antiangiogenesis, Ribatti, D. (Ed.). Chapter 7, Bentham eBooks, San Francisco.
8:   Bertolini, F., P. Mancuso, P. Braidotti, Y. Shaked and R.S. Kerbel, 2009. The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer. Biochim. Biophys. Acta Rev. Cancer, 1796: 27-32.
CrossRef  |  
9:   Bertolini, F., P. Mancuso, Y. Shaked and R.S. Kerbel, 2007. Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discovery Today, 12: 806-8012.
CrossRef  |  PubMed  |  
10:   Bertolini, F., P. Marighetti and Y. Shaked, 2010. Cellular and soluble markers of tumor angiogenesis: From patient selection to the identification of the most appropriate postresistance therapy. Biochim. Biophys. Acta Rev. Cancer, 1806: 131-137.
CrossRef  |  
11:   Bertolini, F., P. Marighetti, I. Martin-Padura, P. Mancuso, D. Hu-Lowe, Y. Shaked and A. D'Onofrio, 2011. Anti-VEGF and beyond: Shaping a new generation of anti-angiogenic therapies for cancer. Drug Discovery Today, 16: 1052-1060.
CrossRef  |  
12:   Bertolini, F., S. Paul, P. Mancuso, S. Monestiroli, A. Gobbi, Y. Shaked and R.S. Kerbel, 2003. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res., 63: 4342-4346.
PubMed  |  Direct Link  |  
13:   Bertolini, F., Y. Shaked, P. Mancuso and R.S Kerbel, 2006. The multifaceted circulating endothelial cell in cancer: From promiscuity to surrogate marker and target identification. Nat. Rev. Cancer, 6: 835-845.
Direct Link  |  
14:   Bosch-Marce, M., H. Okuyama, H. Kimura, J. Wesley and K. Sarkaret al., 2008. Effects of aging and HIF-1 activity on angiogenic cell mobilization and recovery of perfusion following critical limb ischemia. Circ. Res., 101: 1310-1318.
15:   Buckstein, R., R.S. Kerbel, Y. Shaked, R. Nayar and C. Foden et al., 2006. High dose celecoxib and metronomic low-dose cyclophosphamide is effective and safe therapy in patients with relapsed and refractory aggressive histology NHL. Clin. Cancer Res., 12: 5190-5198.
16:   Calleri, A., A. Bono, V. Bagnardi, J. Quarna and P. Mancuso et al., 2009. Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin. Cancer Res., 15: 7652-7657.
CrossRef  |  PubMed  |  
17:   Cervi, D., Y. Shaked, M. Haeri, T. Usenko and C.R. Lee et al., 2007. Enhanced natural killing and erythropoietic activity in vegf overexpressing mice delays f-mulv induced leukemogenesis. Blood, 109: 2139-2146.
18:   Ciarrocchi, A., V. Jankovic, Y. Shaked, D.J. Nolan and V. Mittal et al., 2007. Id1 controls an angiogenic switch in the bone marrow by inhibiting the expression of p21. PLoS One, Vol. 2. .
19:   Daenen, L.G., J.M. Roodhart, Y. Shaked and E.E. Voest, 2010. Vascular Disrupting Agents (VDAs) in anticancer therapy. Curr. Clin. Pharmacol., 5: 178-185.
Direct Link  |  
20:   Daenen, L.G., Y. Shaked, S. Man, P. Xu, E.E. Voest, R.M. Hoffman and R.S. Kerbel, 2009. Combining metronomic chemotherapy with Vascular Disrupting Agent (VDA) therapy: Impact on primary breast tumors versus advanced metastatic disease. Mol. Cancer Ther., 8: 2872-2881.
21:   Daenen, L.G.M., J.M.L. Roodhart, Y. Shaked and E.E. Voest, 2013. A good host turned bad: Host-Mediated mechanisms of resistance to anti-tumor therapies. Oncogene. .
22:   Dellapasqua, S., F. Bertolini, V. Bagnardi, E. Campagnoli and E. Scarano et al., 2008. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J. Clin. Oncol., 26: 4899-4905.
Direct Link  |  
23:   Donate, F., G.C. Parry, Y. Shaked, H. Hensley and X. Guan et al., 2008. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin. Can. Res., 14: 2137-2144.
PubMed  |  
24:   Emmenegger, U., G. Francia, A. Chow, Y. Shaked, A. Kouri, S. Man and R.S. Kerbel, 2011. Tumors that acquire resistance to low-dose metronomic cyclophosphamide retain sensitivity to maximum tolerated dose cyclophosphamide. Neoplasia, 13: 40-48.
Direct Link  |  
25:   Emmenegger, U., G. Francia, Y. Shaked and R.S. Kerbel, 2010. Metronomic chemotherapy: Principles and lessons learned from applications in the treatment of metastatic prostate cancer. Recent Results Cancer Res., 180: 165-183.
CrossRef  |  
26:   Emmenegger, U., G.C. Morton, G. Francia, Y. Shaked and M. Franco, S. Man and R.S. Kerbel, 2006. Low-dose metronomic cyclophosphamide induces sustained hypoxia in human tumor xenografts, which can be exploited therapeutically by the combination with the hypoxic cell cytotoxin tirapazamine. Can. Res., 66: 1664-1674.
CrossRef  |  
27:   Emmenegger, U., S. Man, Y. Shaked, G. Francia, J.W. Wong, D.J. Hicklin and R.S. Kerbel, 2004. A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Can. Res., 64: 3994-4000.
Direct Link  |  
28:   Emmenegger, U., Y. Shaked, G. Bocci, I. Spasojevic and S. Ludeman, S. Man and R.S. Kerbel, 2007. Altered metabolism of cyclophosphamide given in a low-dose metronomic manner does not account for eventual resistance. Mol. Cancer Ther., 6: 2280-2289.
29:   Folkins, C., S. Man, P. Xu, Y. Shaked, D.J. Hicklin and R.S. Kerbel, 2007. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res., 67: 3560-3564.
PubMed  |  
30:   Folkins, C., Y. Shaked, S. Man, T. Tang and C.R. Lee et al., 2009. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res., 69: 7243-7251.
CrossRef  |  
31:   Francia, G., S.K. Green, G. Bocci, S. Man and U. Emmenegger et al., 2005. Down-Regulation of DNA mismatch repair proteins in human and murine tumor spheroids: Implications for multicellular resistance to alkylating agents. Mol. Cancer Ther., 4: 1484-1494.
PubMed  |  
32:   Francia, G., U. Emmenegger, C.R. Lee, Y. Shaked and C. Folkins et al., 2008. Long term monitoring of metastasis models using a transfected marker detectable in the mouse urine. Mol. Cancer Ther., 7: 3452-3459.
33:   Francia, G., Y. Shaked, K. Hashimoto, J. Sun and M. Yin et al., 2012. Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumor effects in the absence of inhibition of systemic vasculogenesis. Mol. Cancer Ther., 11: 680-689.
CrossRef  |  
34:   Franco, M., S. Man, L. Chen, U. Emmenegger and Y. Shaked et al., 2006. Targeted Antiangiogenic Therapy Leads to Short and Long Term Impairment of Vascular Function and Increases in Tumor Hypoxia. Cancer Res., 66: 3639-3648.
PubMed  |  
35:   Fremder, E., M. Munster, A. Aharon, V. Miller and S. Gingis-Velitski et al., 2013. Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin. Int. J. Cancer,. 10.1002/ijc.28678.
CrossRef  |  
36:   Gingis-Velitski, S., D. Loven, L. Benayoun, M. Munster and R. Bril et al., 2011. Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res., 71: 6986-6996.
CrossRef  |  
37:   Glade Bender, J.L., P.C. Adamson, J.M. Reid, L. Xu and S. Baruchel et al., 2008. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A children's oncology group study. J. Clin. Oncol., 26: 399-405.
Direct Link  |  
38:   Hijazi, N., Y. Shaked, H. Rosenmann, T. Ben-Hur and R. Gabizon, 2003. Copper binding to PrPC may inhibit prion disease propagation. Brain Res., 993: 192-200.
CrossRef  |  PubMed  |  
39:   Izhak, L., G. Wildbaum, S. Jung, A. Stein, Y. Shaked and N. Karin, 2012. Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One, Vol. 7. 10.1371/journal.pone.0028305.
CrossRef  |  
40:   Izhak, L., G. Wildbaum, U. Weinberg, Y. Shaked and J. Alami et al., 2010. Predominant expression of CCL2 at the tumor site of prostate cancer patients directs a selective loss of immunological tolerance to CCL2 that could be amplified in a beneficial manner. J. Immunol., 184: 1092-1101.
CrossRef  |  
41:   Kerbel, R.S., F. Bertolini and Y. Shaked, 2010. Impact of Endothelial Progenitor Cells in Tumor Angiogenesis and Outcome of Antiangiogenic Therapy: New Perspectives on an Ongoing Controversy. In: The Tumor Microenviroment, Bagely, R.G. (Ed.). Chapter 12, Humana Press, New York.
42:   Kerbel, R.S., F. Bertolini, S. Man, D.J. Hicklin, U. Emmenegger and Y. Shaked, 2006. Antiangiogenic Drugs as Broadly Effective Chemosensitizing Agents. In: Angiogenesis: From Basic Science to Clinical Applications, Ferrara, N. (Ed.). CRC Press, Boca Raton, FL., USA, pp: 181-198.
43:   Kerbel, R.S., U. Emmenegger, S. Man, R. Munoz, F. Bertolini and Y. Shaked, 2007. Metronomic Antiangiogenic Chemotherapy: Questions and Answers. In: Tumor Angiogenesis-Basic Mechanisms and Cancer Therapy, Marme, D. and N. Fusenig (Eds.). Springer-Verlag, Heidelberg, Germany, pp: 593-607.
44:   Kerbel, R.S., Y. Emmenegger, S. Man, R. Munoz, C. Folkin and Y. Shaked, 2008. Metronomic Antiangiogenic Chemotherapy in Mice and Man. In: Antiangiogenic Agents in Cancer Therapy, Teicher, B.A. and L.M. Ellis (Eds.). 2nd Edn., The Humana Press Inc., Totowa, USA, Pages: 577.
45:   Kerbel, R.S., Y. Shaked, S. Man, R. Munoz and W. Cruz-Munoz, 2009. Metronomic Chemotherapy: Basis and Rationale. In: Molecular Biology in Cancer: Toward New Therapies, Garcia-Foncillas, J. (Ed.). Prous Science, Barcelona, Spain, pp: 357-380.
46:   Langenberg, M.H., M.W. Nijkamp, J.M. Roodhart, N. Snoeren and T. Tang et al., 2010. Liver surgery induces an immediate mobilization of progenitor cells in liver cancer patients: A potential role for G-CSF. Cancer Biol. Ther., 9: 743-748.
Direct Link  |  
47:   Loven, D., E. Be'ery, R. Yeryshaimi, C. Koren and A. Sulkes et al., 2007. Daily low-dose/continuous capecitabine reduces VEGF and PDGF-BB serum levels in rectal carcinoma patients receiving neoadjuvant irradiation. Acta Oncol., 2007: 1-6.
48:   Loven, D., E. Hasnis, F. Bertolini and Y. Shaked, 2013. Low-dose metronomic chemotherapy: From past experience to new paradigms in the treatment of cancer. Drug Discovery Today, 18: 193-201.
CrossRef  |  
49:   Mancuso, P., M. Colleoni, A. Calleri, L. Orlando and P. Maisonneuve et al., 2006. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood, 108: 452-459.
Direct Link  |  
50:   Miller, K., A. Eldar-Boock, D. Polyak, E. Segal, L. Benayoun, Y. Shaked and R. Satchi-Fainaro, 2011. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol. Pharmacol., 8: 1052-1062.
CrossRef  |  
51:   Miller, K., C. Clementi, D. Polyak, A. Eldar-Boock and L. Benayoun et al., 2013. Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials, 34: 3795-3806.
CrossRef  |  
52:   Munoz, R., S. Man, Y. Shaked, C.R. Lee, J. Wong, G. Francia and R.S Kerbel, 2006. Highly efficacious non-toxic preclinical treatment for advanced metastatic breast cancer using oral combination UFT-Cyclophosphamide metronomic chemotherapy. Cancer Res., 66: 3386-3391.
PubMed  |  
53:   Munoz, R., Y. Shaked, F. Bertolini, U. Emmenegger, S. Man and RS. Kerbel, 2005. Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast, 14: 466-479.
CrossRef  |  
54:   Ng, S., A. Sparreboom, Y. Shaked, R.C. Lee and S. Man et al., 2006. Metronomic abi-007 therapy: Antiangiogenic and antitumor activity of a nanoparticle albumin-bound paclitaxel. Clin. Cancer Res., 12: 4331-4338.
55:   Pak, B.J., J. Lee, B.L. Thai, S.Y. Fuchs and Y. Shaked et al., 2004. Radiation resistance of human melanoma analyzed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene, 23: 30-38.
PubMed  |  Direct Link  |  
56:   Pasquier, E., M.W. Kieran, J. Sterba, Y. Shaked and S. Baruchel et al., 2011. Moving forward with metronomic scheduling of anti-cancer treatment: Meeting report of the 2nd international workshop on metronomic and antiangiogenic chemotherapy in paediatric oncology. Trans. Oncol., 4: 203-211.
57:   Schmid, M.C., D.J. Avraamides, P. Foubert, Y. Shaked and S.W. Kang et al., 2011. Combined blockade of integrin-α4β1 plus cytokines SDF-1α or IL-1β potently inhibits tumor inflammation and growth. Cancer Res., 71: 6965-6975.
CrossRef  |  
58:   Segal, E., H. Pan, L. Benayoun, P. Kopeckova, Y. Shaked, J. Kopecek and R. Satchi-Fainaro, 2011. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 32: 4450-4463.
CrossRef  |  
59:   Shaked, G.M., Y. Shaked, Z.K. Inbal, M. Halimi, I. Avraham and R. Gabizon, 2001. A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J. Biol. Chem., 276: 31479-31482.
CrossRef  |  
60:   Shaked, Y. and E.E. Voest, 2009. Bone marrow derived cells in tumor angiogenesis and growth: Are they the good, the bad or the evil? Biochim. Biophys. Acta, 1796: 1-4.
CrossRef  |  
61:   Shaked, Y. and R.S. Kerbel, 2007. Antiangiogenic strategies on defense: On the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res., 67: 7055-7058.
Direct Link  |  
62:   Shaked, Y., A. Ciarrocchi, M. Franco, C.R. Lee and S. Man et al., 2006. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 313: 1785-1787.
CrossRef  |  Direct Link  |  
63:   Shaked, Y., D. Cervi, M. Neuman, L. Chen and G. Klement et al., 2005. The splenic microenvironment is a source of pro-angiogenesis / inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood, 105: 4500-4507.
PubMed  |  Direct Link  |  
64:   Shaked, Y., E. Henke, J. Roodhart, P Mancuso and M. Langenberg et al., 2008. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell, 14: 263-273.
PubMed  |  
65:   Shaked, Y., F. Bertolini, S. Man, M.S. Rogers and D. Cervi et al., 2005. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 7: 101-111.
CrossRef  |  PubMed  |  
66:   Shaked, Y., G. Bocci, R. Munoz, S. Man and J.M.L. Ebos et al., 2005. Cellular and molecular surrogate markers to monitor targeted and non-targeted antiangiogenic drug activity and determine optimal biologic dose. Curr. Cancer Drug Target, 5: 551-559.
Direct Link  |  
67:   Shaked, Y., H. Rosenmann, G. Talmor and R. Gabizon, 1999. A C-terminal truncated PrP isoform is present in mature sperm. J. Biol. Chem., 274: 32153-32158.
CrossRef  |  PubMed  |  
68:   Shaked, Y., H. Rosenmann, N. Hijazi, M. Halimi and R. Gabizon, 2001. Copper binding to PrP Isoforms: A putative marker of their conformation and function. J. Virol., 75: 7872-7874.
CrossRef  |  
69:   Shaked, Y., N. Hijazi and R. Gabizon, 2002. Doppel and PrPC do not share the same membrane microenvironment. FEBS let., 530: 85-88.
CrossRef  |  
70:   Shaked, Y., P. Nathan, L.G. Daenen and R.S. Kerbel, 2010. Vascular Disrupting Agents: Rationale and Mechanisms of Action. In: Vascular Targeting Therapy for Cancer, Meyers, T. (Ed.). Springer, New York, pp: 117-134.
71:   Shaked, Y., R. Engelstein and R. Gabizon, 2002. The binding of prion proteins to serum components is affected by detergent extraction conditions. J. Neurochem., 82: 1-5.
CrossRef  |  PubMed  |  
72:   Shaked, Y., S. McAllister, O. Fainaru and N. Almog, 2013. Tumor dormancy and the angiogenic switch: Possible implications of bone marrow-derived cells. Curr. Pharm. Des. .
Direct Link  |  
73:   Shaked, Y., T. Tang, J. Woloszynek, L.G. Daenen and S. Man et al., 2009. Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents. Cancer Res., 69: 7524-7528.
CrossRef  |  
74:   Shaked, Y., U. Emmenegger, S. Man, D. Cervi, F. Bertolini, Y. Ben-David and R.S. Kerbel, 2005. Optimal biological dose of metronomic chemotherapy regimen is associated with maximum antiangiogenic activity. Blood, 105: 4500-4507.
PubMed  |  
75:   Shaked, Y., U. Emmenegger, G. Francia, L. Chen and C. Lee et al., 2005. Intermittent bolus dose combined with low-dose metronomic cyclophosphamide as an effective regimen for delaying relapse in both solid and hematologic malignancies. Can. Res., 65: 7045-7051.
76:   Voloshin, T., E.E. Voest and Y. Shaked, 2013. The host immunological response to cancer therapy: An emerging concept in tumor biology. Exp. Cell Res., 319: 1687-1695.
CrossRef  |  
77:   Voloshin, T., S. Gingis-Velitski, R. Bril, L. Benayoun and M. Munster et al., 2011. G-CSF supplementation with chemotherapy can promote revascularization and subsequent tumor regrowth: Prevention by a CXCR4 antagonist. Blood, 118: 3426-3435.
CrossRef  |  
78:   Voskas, D., Y. Babichev, L.S. Ling, J. Alami, Y. Shaked, R.S. Kerbel and D.J. Dumont, 2008. An eosinophil-specific cytokine and chemokine profile characterizes the inflammatory skin disease observed in Tie-2 transgenic mice. J. Leukocyte Biol., 84: 59-67.
79:   Zaffryar-Eilot, S., D. Marshall, T. Voloshin, A. Bar-Zion and R. Spangler et al., 2013. Lysyl oxidase-like-2 promotes tumour angiogenesis and is a potential therapeutic target in angiogenic tumours. Carcinogenesis, 34: 2370-2379.
CrossRef  |