Prof. Dr. Qiang Sheng Wu
My Social Links

Prof. Dr. Qiang Sheng Wu

Professor
Yangtze University, China


Highest Degree
Ph.D. in Horticultural Plant Biology from Huazhong Agricultural University, China

Share this Profile

Area of Interest:

Plant and Soil Sciences
100%
Plant Physiology
62%
Soil Quality
90%
Horticulture
75%
Mycorrhiza
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

    ,
  1. Wu, Q.S., 2017,. Arbuscular mycorrhizas and stress tolerance of plants. 1st Edn., Springer Singapore, Singapore., ISBN: 978-981-10-4114-3, Pages: 327.
    CrossRef  |  Direct Link  |  
  2. Zou, Y.N., P. Wang, C.Y. Liu, Q.D. Ni, D.J. Zhang and Q.S. Wu, 2017. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scient. Rep., Vol. 7. 10.1038/srep41134.
    CrossRef  |  Direct Link  |  
  3. Wu, H.H., Y.N. Zou, M.M. Rahman, Q.D. Ni and Q.S. Wu, 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scient. Rep., Vol. 7. 10.1038/srep42389.
    CrossRef  |  Direct Link  |  
  4. Wang, W.X., F. Zhang, Z.L. Chen, J. Liu and Q.S. Wu et al., 2017. Responses of phytohormones and gas exchange to mycorrhizal colonization in trifoliate orange subjected to drought stress. Arch. Agron. Soil Sci., 63: 14-23.
    CrossRef  |  Direct Link  |  
  5. Huang, Y.M., Y.N. Zou and Q.S. Wu, 2017. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci. Rep., 10.1038/srep42335.
    CrossRef  |  Direct Link  |  
  6. Zou, Y.N., X. Chen, A.K. Srivastava, P. Wang, L. Xiang and Q.S. Wu, 2016. Changes in rhizosphere properties of trifoliate orange in response to mycorrhization and sod culture. Appl. Soil Ecol., 107: 307-312.
    CrossRef  |  Direct Link  |  
  7. Zou, Y.N., A.K. Srivastava and Q.S. Wu, 2016. Glomalin: A potential soil conditioner for perennial fruits. Int. J. Agric. Biol., 18: 293-297.
    CrossRef  |  Direct Link  |  
  8. Wu, Q.S., S. Wang and A.K. Srivastava, 2016. Mycorrhizal hyphal disruption induces changes in plant growth, glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil Tillage Rese., 160: 82-91.
    CrossRef  |  Direct Link  |  
  9. Wu, Q.S., M.Q. Cao, Y.N. Zou, C. Wu and X.H. He, 2016. Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci. Hortic., 199: 95-102.
    CrossRef  |  Direct Link  |  
  10. Wu, Q.S., C.Y. Liu, D.J. Zhang, Y.N. Zou, X.H. He and Q.H. Wu, 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza, 26: 237-247.
    CrossRef  |  Direct Link  |  
  11. Liu, C.Y., A.K. Srivastava, D.J. Zhang, Y.N. Zou and Q.S. Wu, 2016. Exogenous phytohormones and mycorrhizas modulate root hair configuration of trifoliate orange. Not. Bot. Hortic. Agrobo., 44: 548-556.
    Direct Link  |  
  12. Zou, Y.N., Y.M. Huang, Q.S. Wu and X.H. He, 2015. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza, 25: 143-152.
    CrossRef  |  Direct Link  |  
  13. Zou, Y.N., A.K. Srivastava, Q.D. Ni and Q.S. Wu, 2015. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front. Microbiol., 10.3389/fmicb.2015.00203.
    CrossRef  |  Direct Link  |  
  14. Zhang, Z.Z., Y.G. Lou, D.J. Deng, M.M. Rahman and Q.S. Wu, 2015. Effects of common mycorrhizal network on plant carbohydrates and soil properties in trifoliate orange-white clover association. Plos One, 10.1371/journal.pone.0142371.
    CrossRef  |  Direct Link  |  
  15. Zhang, Z.Z., A.K. Srivastava, Q.S. Wu and G.H. Li, 2015. Growth performance and rhizospheric traits of peach (Prunus persica) in response to mycorrhization on replant versus non-replant soil. Indian J. Agric. Sci., 85: 125-130.
  16. Wu, Q.S., Y.G. Lou and Y. Li, 2015. Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci. Hortic., 181: 189-193.
    CrossRef  |  Direct Link  |  
  17. Wu, Q.S., Y. Li, Y.N. Zou and X.H. He, 2015. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 25: 121-130.
    CrossRef  |  Direct Link  |  
  18. Wu, Q.S., A.K. Srivastava, S. Wang and J.X. Zeng, 2015. Exogenous application of EE-GRSP and changes in citrus rhizosphere properties. Indian J. Agric. Sci., 85: 802-806.
  19. Wu, Q.S., A.K. Srivastava, M.Q. Cao and J. Wang, 2015. Mycorrhizal function on soil aggregate stability in root zone and root-free hyphae zone of trifoliate orange. Arch. Agron. Soil Sci., 61: 813-825.
    CrossRef  |  Direct Link  |  
  20. Wu, Q.S., A.K. Srivastava and Y. Li, 2015. Effects of mycorrhizal symbiosis on growth behavior and carbohydrate metabolism of trifoliate orange under different substrate P levels. J. Plant Growth Regul., 34: 499-508.
    CrossRef  |  Direct Link  |  
  21. Wang, S., Q.S. Wu and X.H. He, 2015. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ., 61: 66-71.
    CrossRef  |  Direct Link  |  
  22. Zou, Y.N., A.K. Srivastava, Q.S. Wu and Y.M. Huang, 2014. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch. Agron. Soil Sci., 60: 1103-1114.
    CrossRef  |  Direct Link  |  
  23. Wu, Q.S., Y.M. Huang, Y.N. Li and X.H. He, 2014. Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. Int. J. Agric. Biol., 16: 207-212.
    Direct Link  |  
  24. Wu, Q.S., S. Wang, M.Q. Cao, Y.N. Zou and Y.X. Yao, 2014. Tempo-spatial distribution and related functionings of root glomalin and glomalin-related soil protein in a citrus rhizosphere. J. Anim. Plant Sci., 24: 245-251.
    Direct Link  |  
  25. Wu, Q.S., M.Q. Cao, Y.N. Zou and X. He, 2014. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scient. Rep., Vol. 4. 10.1038/srep05823.
    CrossRef  |  Direct Link  |  
  26. Wang, S., A.K. Srivastava, Q.S. Wu and R. Fokom, 2014. The effect of mycorrhizal inoculation on the rhizosphere properties of trifoliate orange (Poncirus trifoliata L. Raf.). Sci. Hortic., 170: 137-142.
    CrossRef  |  Direct Link  |  
  27. Liu, C.Y., Y.M. Huang, Y.N. Zou and Q.S. Wu, 2014. Regulation of root length and lateral root number in trifoliate orange applied by peroxide hydrogen and arbuscular mycorrhizal fungi. Not. Bot. Hortic. Agrobo., 42: 94-98.
    Direct Link  |  
  28. Liu, C.Y., A.K. Srivastava and Q.S. Wu, 2014. Effect of auxin inhibitor and AMF inoculation on growth and root morphology of trifoliate orange (Poncirus trifoliata) seedlings. Indian J. Agric. Sci., 84: 1342-1346.
  29. Liu, C.Y and Q.S. Wu, 2014. Relationships between mycorrhizas and antioxidant enzymes in citrus (Citrus tangerina) seedlings inoculated with Glomus mosseae. Pak. J. Bot., 46: 1125-1128.
    Direct Link  |  
  30. Huang, Y.M., Y.Y. Chen, Y.N. Zou and Q.S. Wu, 2014. Integrated effect of arbuscular mycorrhizal fungi and hydrogen peroxide on the root system of trifoliate orange seedlings. Sci. Asia, 40: 106-112.
    CrossRef  |  Direct Link  |  
  31. Huang, Y.M., A.K. Srivastava, Y.N. Zou, Q.D. Ni, Y. Han and Q.S. Wu, 2014. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol., 10.3389/fmicb.2014.00682.
    CrossRef  |  Direct Link  |  
  32. Hameed, A., Q.S. Wu, E.F. Abd-Allah, A. Hashem, A. Kumar, H.A. Lone and P. Ahmad, 2014. Role Of AM Fungi In Alleviating Drought Stress In Plants. In: Use Of Microbes For The Alleviation Of Soil Stresses. Miransar, M. (Ed.). Springer, New York., pp: 55-75.
    CrossRef  |  Direct Link  |  
  33. Zou, Y.N., Q.S. Wu, Y.M. Huang, Q.D. Ni and X.H. He, 2013. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. Plos One, 10.1371/journal.pone.0080568.
    CrossRef  |  Direct Link  |  
  34. Wu, Q.S., Y.N. Zou, Y.M. Huang, Y. Li and X.H. He, 2013. Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Sci. Hortic., 160: 320-325.
    CrossRef  |  Direct Link  |  
  35. Wu, Q.S., Y.N. Zou and Y.M. Huang, 2013. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol., 6: 37-43.
    CrossRef  |  Direct Link  |  
  36. Wu, Q.S., Y.N. Zou and X.H. He, 2013. Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Sci. Hortic., 160: 366-374.
    CrossRef  |  Direct Link  |  
  37. Wu, Q.S., X.H. He, M.Q. Cao, Y.N. Zou, S. Wang and Y. Li, 2013. Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in citrus rhizosphere. Int. J. Agric. Biol., 15: 603-606.
    Direct Link  |  
  38. Wu, Q.S., A.K. Srivastava and Y.N. Zou, 2013. AMF-induced tolerance to drought stress in citrus: A review. Scient. Hortic., 164: 77-87.
    CrossRef  |  Direct Link  |  
  39. Wu, Q.S and Y.N. Zou, 2013. Mycorrhizal symbiosis alters root H+ effluxes and root system architecture of trifoliate orange seedlings under salt stress. J. Anim. Plant Sci., 23: 143-148.
    Direct Link  |  
  40. Cao, M.Q., Q.S. Wu and Y.N. Zou, 2013. An improved ink-acetic acid technique for staining arbuscular mycorrhizas of citrus. Int. J. Agric. Biol., 15: 386-388.
    Direct Link  |  
  41. Wu, Q.S., Y.N. Zou, M. Liu and K. Cheng, 2012. Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange Sseedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40: 80-85.
    CrossRef  |  Direct Link  |  
  42. Wu, Q.S., Y.N. Zou, C.Y. Liu and T. Lu, 2012. Interacted effect of arbuscular mycorrhizal fungi and polyamines on root system architecture of citrus seedlings. J. Integr. Agric., 11: 1675-1681.
    CrossRef  |  Direct Link  |  
  43. Wu, Q.S., X.H. He, Y.N. Zou, K.P. He, Y.H. Sun and M.Q. Cao, 2012. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biol. Biochem., 45: 181-183.
    CrossRef  |  Direct Link  |  
  44. Wu, Q.S., X.H. He, Y.N. Zou, C.Y. Liu, J. Xiao and Y. Li, 2012. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul., 68: 27-35.
    CrossRef  |  Direct Link  |  
  45. Wu, Q.S and Y.N. Zou, 2012. Evaluating effectiveness of four inoculation methods with arbuscular mycorrhizal fungi on trifoliate orange seedlings. Int. J. Agric. Biol., 14: 266-270.
  46. Wu, Q.S and A.K. Srivastava, 2012. Rhizosphere Microbial Communities: Isolation, Characterization And Value Addition For Substrate Development. In: Advances In Citrus Nutrition. Srivastava, A.K (Ed.). Springer, Netherlands., pp: 169-194.
    CrossRef  |  Direct Link  |  
  47. Zou, Y.N and Q.S. Wu, 2011. Sodium chloride stress induced changes in leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata) seedlings inoculated with mycorrhizal fungi. Not..Bot. Horti. Agrobo., 39: 64-69.
    CrossRef  |  Direct Link  |  
  48. Wu, Q.S., Y.N. Zou, Y.H. Peng and C.Y. Liu, 2011. Root morphological modification of mycorrhizal citrus (Citrus tangerine) seedlings after application with exogenous polyamines. J. Anim. Plant Sci., 21: 20-25.
    Direct Link  |  
  49. Wu, Q.S., Y.N. Zou, X.H. He and P. Luo, 2011. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regul., 65: 273-278.
    CrossRef  |  Direct Link  |  
  50. Wu, Q.S., Y.N. Zou and X.H. He, 2011. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci. Hortic., 129: 294-298.
    CrossRef  |  Direct Link  |  
  51. Wu, Q.S., Y.N. Zou and G.Y. Wang, 2011. Arbuscular mycorrhizal fungi and acclimatization of micropropagated citrus. Commun. Soil Sci. Plant Anal., 42: 1825-1832.
    CrossRef  |  Direct Link  |  
  52. Wu, Q.S., G.H. Li and Y.N. Zou, 2011. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not. Bot. Hortic. Agrobo., 39: 232-236.
    Direct Link  |  
  53. Wu, Q.S., 2011. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ., 57: 459-464.
    Direct Link  |  
  54. Wu, Q.S and Y.N. Zou, 2011. Citrus Mycorrhizal Responses To Abiotic Stresses And Polyamines. In: Advances In Plant Physiology. Hemantaranjan, A. (Ed.). India: Scientific Publishers, India., pp: 31-56.
  55. Wu, Q.S and Y.N. Zou, 2011. Arbuscular Mycorrhizal Symbiosis Alleviates Oxidative Stress Of Plants. In: Oxidative Stress: Role Of Antioxidants In Plants. Ahmad, P and S. Umar et al. (Ed.). Studium Press Pvt. Ltd, India., pp: 269-282.
  56. Wu, Q.S., Y.N. Zou, W. Liu, X.F. Ye, H.F. Zai and L.J. Zhao, 2010. Alleviatin of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems. Plant Soil Environ., 56: 470-475.
    Direct Link  |  
  57. Wu, Q.S., Y.N. Zou, T.T. Zhan and C.Y. Liu, 2010. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling. Not. Bot. Hort. Agrobot. Cluj., 38: 25-31.
  58. Wu, Q.S., Y.N. Zou and X.H. He, 2010. Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int. J. Agric. Biol., 12: 576-580.
    Direct Link  |  
  59. Wu, Q.S., Y.N. Zou and X.H. He, 2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant., 32: 297-304.
    CrossRef  |  Direct Link  |  
  60. Wu, Q.S., Y.H. Peng, Y.N. Zou and C.Y. Liu, 2010. Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings. Sci. Asia, 36: 254-258.
    CrossRef  |  Direct Link  |  
  61. Wu, Q.S., G.H. Li and Y.N. Zou, 2010. Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. J. Anim. Plant Sci., 21: 746-750.
    Direct Link  |  
  62. Wu, Q.S., 2010. Research And Application Of Arbuscular Mycorrhizas In Horticultural Plants. Beijing: Scientific Publishers, Beijing, China, Pages: 204..
  63. Wu, Q.S and Y.N. Zou, 2010. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci. Hortic., 125: 289-293.
    CrossRef  |  Direct Link  |  
  64. ,
  65. Wu, Q.S., Y. Levy and Y.N. Zou, 2009,. Arbuscular mycorrhizae and water relations in citrus. In: Tennant, Benkeblia P.N. (Ed.). Global Science Books, Japan pp. 105-112.
    Direct Link  |  
  66. Wu, Q.S. and Y.N. Zou, 2009. Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp. Agric. Scientist, 92: 33-38.
    Direct Link  |  
  67. Wu, Q.S and Y.N. Zou, 2009. The effect of dual application of arbuscular mycorrhizal fungi and polyamines upon growth and nutrient uptake on trifoliate orange (Poncirus trifoliata) seedlings. Not. Bot. Hort. Agrobot. Cluj, 37: 95-98.
    Direct Link  |  
  68. Wu, Q.S and Y.N. Zou, 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ., 55: 436-442.
    Direct Link  |  
  69. Wu, Q.S and Y.N. Zou, 2009. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. Sci. Asia, 35: 388-391.
    CrossRef  |  Direct Link  |  
  70. Wu, Q.S and Y.N. Zou, 2009. Arbuscular Mycorrhizas Improve Water Relations Of Plants Exposed To Drought. In: Advances In Plant Physiology. Hemantaranjan, A. (Ed.). India: Scientific Publishers, India., pp: 23-52.
  71. Wu, Q.S and Y.N. Zou, 2009. Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. Not. Bot. Hort. Agrobot. Cluj, 37: 133-138.
    CrossRef  |  Direct Link  |  
  72. Wu, Q.S., R.X. Xia and Y.N. Zou, 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur. J. Soil Biol., 44: 122-128.
    CrossRef  |  Direct Link  |  
  73. Wu, Q.S., Y.N. Zou, R.X. Xia and M.Y. Wang, 2007. Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot. Stud., 48: 147-154.
    Direct Link  |  
  74. Wu, Q.S., R.X. Xia, Y.N. Zou and G.Y. Wang, 2007. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiol. Plant., 29: 543-549.
    CrossRef  |  Direct Link  |  
  75. Wu, Q.S., Y.N. Zou and R.X. Xia, 2006. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur. J. Soil Biol., 42: 166-172.
    CrossRef  |  Direct Link  |  
  76. Wu, Q.S., R.X. Xia and Y.N. Zou, 2006. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol., 163: 1101-1110.
    CrossRef  |  Direct Link  |  
  77. Wu, Q.S. and R.X. Xia, 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol., 163: 417-425.
    CrossRef  |  Direct Link  |