Dr. Ioannis  Konstantinos Argyros
My Social Links

Dr. Ioannis Konstantinos Argyros

Professor
Cameron University, USA


Highest Degree
Ph.D. in Mathematics from University of Georgia, USA

Share this Profile

Biography

Dr. Ioannis K. Argyros is currently working as Full Professor at Cameron University, USA. He has completed his Ph.D. in Mathematics from University of Georgia, Athens, Georgia. Previously he was appointed as Teaching-Research Assistant, University of Georgia, USA, Visiting Assistant Professor, University of Iowa, USA, Assistant Professor, New Mexico State University, USA and Serving the Greek Army, Greece. He is also serving as reviewer for more than 126 journals and reviewer for book and grants. He is member of editorial board in number of journals. He has supervised 18 PhD thesis. He has published 25 books and monographs, 422 research articles in international top refereed journals contributed as author/co-author. He also presented number of invited lectures.

Area of Interest:

Mathematics
100%
Numerical Analysis
62%
Fixed Point Theory
90%
Functional Analysis
75%
Operator Theory
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Argyros, I.K. and S. Hilout, 2016. The majorant method in the theory of Newton-Kantorovich approximations and generalized Lipschitz conditions. J. Comput. Appl. Math., 291: 332-347.
    CrossRef  |  Direct Link  |  
  2. Anastassiou, G. A. and I.K. Argyros, 2016. Approximating fixed points with applications in fractional calculus. J. Comput. Anal. Appli., 21: 1225-1242.
    Direct Link  |  
  3. Sahu, D.R., Y.J. Cho, R.P. Agarwal and I.K. Argyros, 2015. Accessibility of solutions of operator equations by Newton-like methods. J. Complexity, 31: 637-657.
    CrossRef  |  Direct Link  |  
  4. Magrenana, A.A. and I.K. Argyros, 2015. New improved convergence analysis for the secant method. Math. comput. Simul., 119: 161-170.
    CrossRef  |  Direct Link  |  
  5. Magrenan, A.A. and I.K. Argyros, 2015. New semilocal and local convergence analysis for the secant method. Appl. Math. Comput., 262: 298-307.
    CrossRef  |  Direct Link  |  
  6. Magrenan, A.A. and I.K. Argyros, 2015. Improved convergence analysis for Newton -like methods. NUMA, 10.1007/s11075-015-0025-3.
    CrossRef  |  Direct Link  |  
  7. Magrenan, A.A. and I.K. Argyros, 2015. Ball convergence theorems for eighth order variants of Newton's method under weak conditions Arab. J. Math., 4: 81-90.
    CrossRef  |  Direct Link  |  
  8. Magrenan, A.A. and I.K. Argyros, 2015. Ball convergence theorems for Maheshari -type eighth order methods under weak conditions. Sao Paolo J. Math., 10.1007/s40863-015-0009-1.
    CrossRef  |  Direct Link  |  
  9. Magrenan, A.A. and I.K. Argyros, 2015. Ball convergence theorems and the convergence planes of an iterative method for nonlinear equations. SeMA J., 71: 39-55.
    CrossRef  |  Direct Link  |  
  10. George, S. and I.K. Argyros, 2015. Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Non. Sc. Appli., 8: 246-254.
    Direct Link  |  
  11. George, S. and I.K. Argyros, 2015. Iterative regularization methods for nonlinear ill-posed operator equations with m-accretive mappings in Banach space. Acta Math. Sinica, 35: 1318-1324.
    CrossRef  |  Direct Link  |  
  12. Argyros, I.K., M.A. Hernandez, S. Hilout and N. Romero, 2015. Directional Chebyshev-type methods for solving equations. Math. Comput., 84: 815-830.
    CrossRef  |  Direct Link  |  
  13. Argyros, I.K., J.A. Ezquerro, M.A. Hernandez, N. Romero and A. I. Velasco, 2015. Expanding the applicability of Secant-like methods for solving nonlinear equations. Carpathian Math. J., 31: 11-30.
    Direct Link  |  
  14. Argyros, I.K., A. Cordero, A. Magrenan and J.R. Torregrosa, 2015. On the convergence of a damped Newton-like method with modified right hand side vector. Appl. Math. Comput., 266: 927-936.
    CrossRef  |  Direct Link  |  
  15. Argyros, I.K., A. Cordero, A. Magrenan and J.R. Torregrosa, 2015. On the convergence of a Damped Secant method with modified right-hand side vector. Appl. Math. Comput., 252: 315-323.
    CrossRef  |  Direct Link  |  
  16. Argyros, I.K. and S. George, 2015. The asymptotic mesh independence principle of Newton's method under weaker conditions. Adav. Appli. Math. Sci., 14: 29-45.
    Direct Link  |  
  17. Argyros, I.K. and S. George, 2015. On a sixth order Jarratt-type method in Banach spaces. Asian Eur. J. Math., .
    Direct Link  |  
  18. Argyros, I.K. and S. George, 2015. Local convergence of a deformed Jarratt-type method in Banach space without inverses. J. Nonlinear Sc. Appl., 8: 246-253.
    Direct Link  |  
  19. Argyros, I.K. and S. George, 2015. Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weak conditions. Int. J. Appl. Comput. Math., 10.1007/s40819-015-0078-y.
    CrossRef  |  Direct Link  |  
  20. Argyros, I.K. and S. George, 2015. A unified local convergence for Jarratt-type methods in Banach space under weak conditions Thai J. Math., 13: 165-176.
  21. Argyros, I.K. and S. George, 2015. A unified local convergence for Chebyshev-Halley-type methods under weak conditions. Mathematica, 60: 463-470.
    Direct Link  |  
  22. Argyros, I.K. and A.A. Magrenan, 2015. On the convergence of inexact two-point Newton-like methods on Banach spaces. Appl. Math. Comput., 265: 893-902.
    CrossRef  |  Direct Link  |  
  23. Argyros, I.K. and A.A. Magrenan, 2015. Extended convergence results for the Newton-Kantorovich iteration. J. Comput. Appl. Math., 286: 54-67.
    CrossRef  |  Direct Link  |  
  24. Argyros, I.K. and A.A. Magrenan, 2015. Expanding the applicability of the secant method under weaker conditions in Banach space. Appl. Math. Comput., 266: 1000-1012.
  25. Argyros, I.K. and S. George, 2015. Ball comparison between two optimal eight-order methods under weak conditions. SeMA J., 72: 1-11.
    CrossRef  |  Direct Link  |  
  26. Argyros, I.K. and A.A.Magrenan, 2015. On the convergence of an optimal fourth order family of methods and its dynamics. Appl. Math. Comput., 252: 336-346.
    CrossRef  |  Direct Link  |  
  27. Argyros, I. K., J. A. Ezquerro, M. A. Hernandez-Veron, S. Hilout and A.A. Magrenan, 2015. Enlarging the convergence domain of secant-like methods for equations. Taiwanese J.Math., 19: 629-652.
    Direct Link  |  
  28. Argyros, I. K. and S.K. Khattri, 2015. Improved error analysis for Newton's method for a certain class of operators. Mathematica, 60: 109-122.
    Direct Link  |  
  29. Argyros, I. K. and S. George, 2015. Expanding the convergence domain of Newton like methods and applications in Banach space. Punjab Univ., 47: 1-13.
    Direct Link  |  
  30. Anastassiou, G. A. and I.K. Argyros, 2015. Newton-type methods on generalized Banach spaces and applications in fractional calculus. Algorithms, 8: 832-849.
    CrossRef  |  Direct Link  |  
  31. Anastassiou, G. A. and I.K. Argyros, 2015. Convergence for iterative methods on Banach spaces of a convergence structure with Applications in fractional calculus. SeMA J., 71: 23-37.
    CrossRef  |  Direct Link  |  
  32. Shobha, M.E., I.K. Argyros and S. George, 2014. Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations. Applic. Mathemat., 41: 107-129.
  33. Ren, H., I.K. Argyros and Y.J. Cho, 2014. Semilocal convergence of steffensen-type algorithms for solving nonlinear equations. Numer. Funct. Anal. Optimiz., 35: 1476-1499.
    CrossRef  |  Direct Link  |  
  34. Magrenan, A.A. and I.K. Argyros, 2014. Extending the applicability of Gauss-Newton method for convex optimization on Riemannian manifolds. Appl. Math. Comput., 249: 453-467.
    CrossRef  |  Direct Link  |  
  35. Magrenan, A.A. and I.K. Argyros, 2014. Expanding the applicability of the Gauss-Newton method for convex optimization under a majorant condition. SeMA J., 65: 37-51.
    CrossRef  |  Direct Link  |  
  36. Khattri, S.K. and I.K. Argyros, 2014. Fixed point for operators with generalized Holder derivative Asian Eur. J. Math., 7: 1-24.
    CrossRef  |  Direct Link  |  
  37. George, S. and I.K. Argyros, 2014. Local convergence of two competing third order methods in Banach space Appl. Math., 41: 341-350.
    CrossRef  |  Direct Link  |  
  38. George, S. and I.K. Argyros, 2014. Expanding the applicability of the Gauss-Newton method for convex optimization under a regularity condition. CANA, 21: 29-44.
  39. Argyros, I.K., Y.J. Cho and S.K. Khattri, 2014. On the convergence of Broyden's method in Hilbert spaces. Applied Math. Comput., 242: 945-951.
    CrossRef  |  Direct Link  |  
  40. Argyros, I.K., Y.J. Cho and S. George, 2014. On the terra incognita for the newton-kantrovich method with applications. J. Korean Math. Soc., 51: 251-266.
    Direct Link  |  
  41. Argyros, I.K., S. Hilout and S.K. Khattri, 2014. Expanding the applicability of Newton's method using the Smale alpha theory. J. Comput. Applied Math., 261: 183-200.
  42. Argyros, I.K., S. Hilout and A.A. Magrenan, 2014. Robust semi-local convergence analysis for inexact Newton method. Applied Math. Comput., 227: 741-754.
    CrossRef  |  Direct Link  |  
  43. Argyros, I.K., S. George and P. Jidesh, 2014. Inverse free iterative methods for nonlinear Ill-posed operator equations. Int. J. Mathemat. Mathemat. Sci., Vol. 2014. 10.1155/2014/754154.
    CrossRef  |  Direct Link  |  
  44. Argyros, I.K., S. George and M. Kunhanandan, 2014. Iterative regularization for ill-posed Hammerstein-type operator equations in Hilbert scales. Stud.Univ.Babes-Bolyai Math., 2: 247-262.
    Direct Link  |  
  45. Argyros, I.K., M.E. Shobha and S. George, 2014. Expanding the applicability of a two step newton-type projection method for ill-posed problems. Funct. Approximat. Commentarii Mathematici, 51: 141-166.
    Direct Link  |  
  46. Argyros, I.K., J.M. Gutierrez, A.A. Magrenan and N. Romero, 2014. Convergence of the relaxed Newton's method. J. Korean Math. Soc., 51: 137-162.
    Direct Link  |  
  47. Argyros, I.K., D. Gonzalez and A.A. Magrenan, 2014. Majorizing sequences for Newton's method under centered conditions for the derivative. Int. J. Comput. Math., 91: 2568-2583.
    CrossRef  |  Direct Link  |  
  48. Argyros, I.K., D. Gonzalez and A.A. Magrenan, 2014. A semilocal convergence for a uniparametric family of efficient secant-like methods. J. Funct. Spaces, Vol. 2014. 10.1155/2014/467980.
    CrossRef  |  Direct Link  |  
  49. Argyros, I.K. and S.K. Khattri, 2014. Local convergence for a family of third order methods in Banach spaces. Punjab Univ. J. Math., 46: 53-62.
    Direct Link  |  
  50. Argyros, I.K. and S.K. Khattri, 2014. Convergence analysis for the two step Newton method of order four. ANTA., 43: 33-44.
  51. Argyros, I.K. and S. Hilout, 2014. Weaker convergence for Newton's method under Holder differentiability. Int. J. Computer Mathemat., 91: 1351-1369.
    CrossRef  |  Direct Link  |  
  52. Argyros, I.K. and S. Hilout, 2014. Weaker convergence conditions for the secant method. Applic. Math., 59: 265-284.
    CrossRef  |  Direct Link  |  
  53. Argyros, I.K. and S. George, 2014. On the semilocal convergence of newton's method for sections on riemannian manifolds. Asian-Eur. J. Mathemat., Vol. 7. 10.1142/S1793557114500077.
    CrossRef  |  Direct Link  |  
  54. Argyros, I.K. and H. Ren, 2014. New w-convergence conditions for the Newton-Kantorovich method. J. Mathemat., 46: 75-84.
  55. Argyros, I.K. and D. Gonzalez, 2014. Extending the applicability of Newton's method for k-Frechet differentiable operators. Appl. Math. Comput., 234: 167-178.
    CrossRef  |  Direct Link  |  
  56. Argyros, I.K. and D. Gonzalez, 2014. Extending the applicability of Newton's method by improving a local result due to Dennis and Schnabel. SeMA J., 63: 53-63.
    CrossRef  |  Direct Link  |  
  57. Argyros, I.K. and A.A. Magrenan, 2014. A unified convergence analysis for secant-type methods. J. Kor. Math. Soc., 51: 1155-1175.
    CrossRef  |  Direct Link  |  
  58. Argyros, I.K. and A.A. Magrecan, 2014. Relaxed secant-type methods. Nonlinear Stud., 21: 485-503.
    Direct Link  |  
  59. Amat, S., I.K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, 2014. Traub-type high order iterative procedures on Riemannian manifolds. SeMA J., 63: 27-52.
    CrossRef  |  Direct Link  |  
  60. Amat, S., I.K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, 2014. Newton-type methods on Riemannian manifolds under Kantorovich-type conditions. Applied Mathemat. Comput., 227: 762-787.
    CrossRef  |  Direct Link  |  
  61. Amat, S., I.K. Argyros and A.A. Magrenan, 2014. Local convergence of the Gauss-Newton method for injective overdetermined systems under the majorant condition. J. Kor. Math. Soc., 51: 955-970.
    Direct Link  |  
  62. Torregrosa, J.R., I.K. Argyros, C. Chun, A. Cordero and F. Soleymani, 2013. Iterative methods for nonlinear equations or systems and their applications. J. Applied Mathemat., Vol. 2013. 10.1155/2013/656953.
    CrossRef  |  Direct Link  |  
  63. Ren, H., L. Wu, W. Bi and I.K. Argyros, 2013. Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals. Applied Mathemat. Comput., 219: 10967-10973.
    CrossRef  |  Direct Link  |  
  64. George, S. and I.K. Argyros, 2013. Tikhonov's regularization and a cubic convergent iterative approximation for nonlinear ill-posed problems. Adv. Applic. Mathemat. Sci., 12: 463-479.
    Direct Link  |  
  65. Argyros, I.K., Y.J. Cho and S.K Khattri, 2013. On a new semilocal convergence analysis for the Jarratt method. Applications,, Vol. 1. 10.1186/1029-242X-2013-194.
    CrossRef  |  Direct Link  |  
  66. Argyros, I.K., J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez and S. Hilout, 2013. Chebyshev-secant-type methods for non-differentiable operators. Milan J. Math., 81: 25-35.
    CrossRef  |  Direct Link  |  
  67. Argyros, I.K. and S.K. Khattri, 2013. An improved semilocal convergence analysis for the Chebyshev method. J. Applied Mathemat. Comput., 42: 509-528.
    CrossRef  |  Direct Link  |  
  68. Argyros, I.K. and S.K. Khattri, 2013. An improved convergence analysis of newton's method for twice frechet differentiable operators. Applic. Mathemat., 40: 459-481.
  69. Argyros, I.K. and S.K. Khattri, 2013. A unifying semi-local analysis for iterative algorithms of high convergence order. J. Nonlinear Anal. Optim.: Theory Applic., 4: 85-103.
    Direct Link  |  
  70. Argyros, I.K. and S.K. Khattri, 2013. A new convergence analysis for the two-step Newton method of order three. Proyecciones (Antofagasta), , 32: 73-79.
    Direct Link  |  
  71. Argyros, I.K. and S. Hilout, 2013. Superquadratic method for generalized equations under relaxed condition on the second Frechet derivative. PUJM, 45: 1-7.
  72. Argyros, I.K. and S. Hilout, 2013. On the semilocal convergence of Steffensen's method using decreasing majorizing sequences. Trans. Math. Program. Applied, 1: 105-115.
  73. Argyros, I.K. and S. Hilout, 2013. On the quadratic convergence of Newton's method under center-Lipschitz but not necessarily Lipschitz hypotheses. Mathematica Slovaca, 63: 621-638.
  74. Argyros, I.K. and S. Hilout, 2013. On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Applied Math., 245: 1-9.
    CrossRef  |  Direct Link  |  
  75. Argyros, I.K. and S. Hilout, 2013. On the convergence of Newton-like methods for solving equations using slantly differentiable operators. Trans. Math. Program. Applied, 1: 117-127.
  76. Argyros, I.K. and S. Hilout, 2013. On the computation of fixed points for random operator equations. J. Nonlinear Anal. Optim.: Theory Applic., 4: 105-114.
  77. Argyros, I.K. and S. Hilout, 2013. On an improved convergence analysis of Newton's method. Applied Mathemat. Comput., 225: 372-386.
    CrossRef  |  Direct Link  |  
  78. Argyros, I.K. and S. Hilout, 2013. Newton-Steffensen-type method for perturbed nonsmooth Subanalytic Variational inequalities. J. Math., 45: 63-75.
    Direct Link  |  
  79. Argyros, I.K. and S. Hilout, 2013. Local convergence analysis of proximal Newton-Gauss method. Trans. Math. Program. Applied, 1: 41-58.
  80. Argyros, I.K. and S. Hilout, 2013. Improved local convergence of Lavrentiev regularization for ill-posed problems. Trans. Math. Program. Applied, 1: 65-76.
  81. Argyros, I.K. and S. Hilout, 2013. Improved local convergence analysis of inexact Gauss-Newton like methods under the majorant condition in Banach spaces. J. Franklin Instit., 350: 1531-1544.
    CrossRef  |  Direct Link  |  
  82. Argyros, I.K. and S. Hilout, 2013. Extending the applicability of the mesh independence principle for solving nonlinear equations. Trans. Math. Program. Applied, 1: 15-26.
  83. Argyros, I.K. and S. Hilout, 2013. Extending the applicability of Newton's method using nondiscrete induction. Czechoslovak Math. J., 63: 115-141.
    CrossRef  |  Direct Link  |  
  84. Argyros, I.K. and S. Hilout, 2013. Extending the applicability of Newton's method on Lie groups. Applied Mathem. Comput., 219: 10355-10365.
    CrossRef  |  Direct Link  |  
  85. Argyros, I.K. and S. Hilout, 2013. Expanding the applicability of two-point Newton-like methods under generalized conditions. Applic. Math., 40: 63-90.
  86. Argyros, I.K. and S. Hilout, 2013. Estimating upper bounds on the limit points of majorizing sequences for Newton's method. Numerical Algorithms, 62: 115-132.
    CrossRef  |  Direct Link  |  
  87. Argyros, I.K. and S. Hilout, 2013. Directional secant-type methods for solving equations. J. Optimiz. Theory Applic., 157: 462-485.
    CrossRef  |  Direct Link  |  
  88. Argyros, I.K. and S. George, 2013. Modification of the kantorovich-type conditions for newton's method involving twice frechet differentiable operators. Asian-Eur. J. Mathem., Vol. 6. 10.1142/S1793557113500265.
    CrossRef  |  Direct Link  |  
  89. Argyros, I.K. and S. George, 2013. Extending the applicability of newton's method on riemannian manifolds with values in a cone. Asian-Eur. J. Mathemat., Vol. 6. .
    Direct Link  |  
  90. Argyros, I.K. and S. George, 2013. Expanding the applicability of a two step newton lavrentiev method for Ill-posed problems. J. Nonlinear Anal. Optim.: Theory Applic., 4: 1-15.
    Direct Link  |  
  91. Argyros, I.K. and S. George, 2013. Expanding the applicability of a Modified Gauss-Newton method for solving nonlinear ill-posed problems. Appl. Math. Comput., 219: 10518-10526.
    CrossRef  |  Direct Link  |  
  92. Argyros, I.K. and R. Verma, 2013. New approach to relaxed proximal point algorithms based on a maximal monotonicity frameworks and applications. Adv. Nonlinear Var. Ineq., 16: 123-135.
  93. Argyros, I.K. and L.U. Uko, 2013. A semilocal convergence analysis of an inexact Newton method using recurrent relations. J. Math., 45: 25-32.
    Direct Link  |  
  94. Argyros, I.K. and H. Ren, 2013. Efficient steffensen-type algorithms for solving nonlinear equations. Int. J. Comput. Mathemat., 90: 691-704.
    CrossRef  |  Direct Link  |  
  95. Argyros, I.K. and D. Gonzalez, 2013. Unified majorizing sequences for Traub-type multipoint iterative procedures. Numerical Algorithms, 64: 549-565.
  96. Argyros, I.K. and S.K. Khattri, 2013. Inexact newton method under weak and center-weak lipschitz conditions. Applic. Math., 40: 237-258.
  97. Amat, S., I.K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, 2013. On a bilinear operator free third order method on Riemannian manifolds. Applied Mathemat. Comput., 219: 7429-7444.
    CrossRef  |  Direct Link  |  
  98. Uko, L.U. and I.K. Argyros, 2012. An extension of Argyros' Kantorovich-type solvability theorem for nonlinear equations. Pan Am. Math. J., 22: 57-66.
  99. Ren, H. and I.K. Argyros, 2012. On the semi-local convergence of Halley's method under a center-Lipschitz condition on the second Frechet derivative. Applied Math. Comput., 218: 11488-11495.
    CrossRef  |  Direct Link  |  
  100. Ren, H. and I.K. Argyros, 2012. Local convergence of efficient Secant-type methods for solving nonlinear equations. Applied Math. Comput., 218: 7655-7664.
    CrossRef  |  Direct Link  |  
  101. Ren, H. and I.K. Argyros, 2012. Improved local analysis for a certain class of iterative methods with cubic convergence. Numerical Algorithms, 59: 505-521.
    CrossRef  |  Direct Link  |  
  102. Khattri, S.K. and I.K. Argyros, 2012. Sixteenth order iterative methods without restraint on derivatives. Applied Math. Sci., 6: 6477-6486.
  103. Argyros, I.K., 2012. On the solution of nonsmooth generalized equations. PanAm. Math. J., 22: 99-105.
  104. Argyros, I.K., 2012. On the solution of generalized equations under Holder continuity conditions. Nonlinear Funct. Anal. Applied, 17: 249-254.
  105. Argyros, I.K., 2012. On the gausss-newton method for solving equation. Proyecciones J. Math., 31: 11-24.
    CrossRef  |  Direct Link  |  
  106. Argyros, I.K., 2012. On the convergence of Newton's method for set valued maps under weak conditions. Korean J. Math., 20: 117-123.
  107. Argyros, I.K., 2012. A unifying semilocal convergence analysis for Newton-like methods under weak and Gateaux differentiability conditions. Nonlinear Funct. Anal. Applied, 17: 443-458.
  108. Argyros, I.K. and S.K. Khattri, 2012. On the convergence of Newton's method under uniformly continuity conditions. Nonlinear Funct. Anal. Applied, 17: 519-537.
  109. Argyros, I.K. and S.K. Khattri, 2012. A finer discretization and mesh independence of Newton's method for solving generalized equations. Nonlinear Funct. Anal. Applied, 17: 539-563.
  110. Argyros, I.K. and S. Hilout, 2012. Weaker conditions for the convergence of Newton's method. J. Complexity, 28: 364-387.
    CrossRef  |  Direct Link  |  
  111. Argyros, I.K. and S. Hilout, 2012. Traub-potra type method for set-valued maps. Aust. J. Math. Anal. Applied, 9: 1-11.
  112. Argyros, I.K. and S. Hilout, 2012. Secant-type methods and nondiscrete induction. Numerical Algorithms, 61: 397-412.
    CrossRef  |  Direct Link  |  
  113. Argyros, I.K. and S. Hilout, 2012. On the semilocal convergence of the secant method with regularly continuous divided differences. Commun. Applied Nonlinear Anal., 19: 55-59.
  114. Argyros, I.K. and S. Hilout, 2012. On the semilocal convergence of damped Newton's method. Applied Math. Comput., 219: 2808-2824.
    CrossRef  |  Direct Link  |  
  115. Argyros, I.K. and S. Hilout, 2012. On the semilocal convergence of Ulm's method. J. Nonlinear Anal. Optimization: Theory Applic., 3: 215-223.
  116. Argyros, I.K. and S. Hilout, 2012. On the semilocal convergence of Newton-like methods using decreasing majorizing sequences. Pan Am. Math. J., 22: 69-79.
  117. Argyros, I.K. and S. Hilout, 2012. On the convergence of inexact two-step Newton-like algorithms using recurrent functions. J. Applied Math. Comput., 38: 41-61.
    CrossRef  |  Direct Link  |  
  118. Argyros, I.K. and S. Hilout, 2012. On a generalization of Moret's theorem for inexact Newton-like methods. Pan Am. Math. J., 22: 67-73.
  119. Argyros, I.K. and S. Hilout, 2012. On Newton's method using recurrent functions under hypotheses up to the second Frechet derivative. ANTA, 41: 99-113.
  120. Argyros, I.K. and S. Hilout, 2012. New conditions for the convergence of Newton-like methods and applications. Applied Math. Comput., 219: 3279-3289.
    CrossRef  |  Direct Link  |  
  121. Argyros, I.K. and S. Hilout, 2012. Majorizing sequences for iterative procedures in Banach spaces. J. Complexity, 28: 562-581.
    CrossRef  |  Direct Link  |  
  122. Argyros, I.K. and S. Hilout, 2012. Majorizing sequences for iterative methods. J. Comput. Applied Math., 236: 1947-1960.
    CrossRef  |  Direct Link  |  
  123. Argyros, I.K. and S. Hilout, 2012. Local convergence results for Newton's method. J. Chungcheong Math. Soc., 25: 267-275.
  124. Argyros, I.K. and S. Hilout, 2012. Improved local convergence of Newton's method under weak majorant condition. J. Comput. Applied Math., 236: 1892-1902.
    CrossRef  |  Direct Link  |  
  125. Argyros, I.K. and L.U. Uko, 2012. An improved convergence analysis of a one-step intermediate Newton iterative scheme for nonlinear equations. J. Applied Math. Comput., 38: 243-256.
    CrossRef  |  Direct Link  |  
  126. Argyros, I.K. and H. Ren, 2012. On the semilocal convergence of derivative free methods for solving equations. ANTA, 41: 3-17.
  127. Argyros, I.K. and H. Ren, 2012. On the Halley method in banach spaces. Applic. Math., 39: 243-255.
  128. Argyros, I.K. and H. Ren, 2012. Local convergence of a three-point method for solving least squares problems. Nonlin. Funct. Anal. Applic., 17: 131-141.
  129. Argyros, I.K. and H. Ren, 2012. Improved ball convergence of Newton's method under general conditions. Applic. Math., 39: 365-375.
  130. Argyros, I.K. and H. Ren, 2012. Ball convergence theorems for Halley's method in Banach space. J. Applied Math. Computing, 38: 453-465.
    CrossRef  |  Direct Link  |  
  131. Ren, H., I.K. Argyros and S. Hilout, 2011. A derivative free iterative method for solving least squares problems. Numer. Algorithms, 58: 555-571.
    CrossRef  |  Direct Link  |  
  132. Khattri, S.K. and I.K. Argyros, 2011. Sixth order derivative free family of iterative methods. Applied Math. Comput., 217: 5500-5507.
    CrossRef  |  
  133. Cho, Y.J., I.K. Argyros and S. Hilout, 2011. Extended sufficient semilocal convergence for the Secant method. Comput. Math. Applic., 62: 599-610.
    CrossRef  |  Direct Link  |  
  134. Argyros, I.K., Y.J. Cho and S. Hilout, 2011. On the semilocal convergence of the Halley method using recurrent functions. J. Applied Math. Comput., 37: 221-246.
    CrossRef  |  Direct Link  |  
  135. Argyros, I.K., Y.J. Cho and S. Hilout, 2011. On the local convergence analysis of inexact Gauss-Newton-like methods. PanAm. Math. J., 21: 11-18.
  136. Argyros, I.K., S. Hilout and S.K. Khattri, 2011. On the convergence of Newton-like methods using outer inverses but not Lipschitz conditions. Nonlinear Funct. Anal. Applic., 16: 253-257.
  137. Argyros, I.K., J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez and S. Hilout, 2011. On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Applied Math., 235: 3195-3206.
    CrossRef  |  Direct Link  |  
  138. Argyros, I.K., 2011. Newton-like methods with at least quadratic order of convergence for the computation of fixed points. J. Math., 43: 9-18.
    Direct Link  |  
  139. Argyros, I.K., 2011. Newton's method and regularly smooth operators. Revue D'Analyse Numerique et De Theorie De L'Approximation, 40: 3-13.
  140. Argyros, I.K., 2011. Extending the application of the shadowing lemma for operators with chaotic behaviour. East Asian Math. J., 27: 521-525.
    Direct Link  |  
  141. Argyros, I.K., 2011. A semilocal convergence analysis for directional Newton methods. Math. Comput., 80: 327-343.
    Direct Link  |  
  142. Argyros, I.K. and S. Hilout, 2011. Weak convergence conditions for inexact Newton-type methods. Applied Math. Comput., 218: 2800-2809.
    CrossRef  |  Direct Link  |  
  143. Argyros, I.K. and S. Hilout, 2011. Semilocal convergence of Newton's method for singular systems with constant rank derivatives. Pure Applied Math., 18: 97-111.
    Direct Link  |  
  144. Argyros, I.K. and S. Hilout, 2011. Semilocal convergence conditions for the Secant method using recurrent functions. Revue D'Analyse Numerique et de Theorie de L'Approximation, 40: 107-119.
    Direct Link  |  
  145. Argyros, I.K. and S. Hilout, 2011. On the solution of systems of equations with constant rank derivatives. Numer. Algorithms, 57: 235-253.
    CrossRef  |  Direct Link  |  
  146. Argyros, I.K. and S. Hilout, 2011. On the solution of generalized equations and variational inequalities. Cubo Math. J., 13: 45-60.
    Direct Link  |  
  147. Argyros, I.K. and S. Hilout, 2011. On the semilocal convergence of Werner's method for solving equations using recurrent functions. J. Math., 43: 19-28.
    Direct Link  |  
  148. Argyros, I.K. and S. Hilout, 2011. On the semilocal convergence of Steffensen's method. Mathematica, 53: 97-106.
    Direct Link  |  
  149. Argyros, I.K. and S. Hilout, 2011. On the semilocal convergence of Newton-type methods, when the derivative is not continuously invertible. Cubo Math. J., 13: 1-15.
    Direct Link  |  
  150. Argyros, I.K. and S. Hilout, 2011. On the radius of convergence of some newton-type methods in banach spaces. Pure Applied Math., 18: 219-230.
  151. Argyros, I.K. and S. Hilout, 2011. On the convergence of newton's method under ω⋆-conditioned second derivative. Applic. Math., 38: 341-355.
  152. Argyros, I.K. and S. Hilout, 2011. On the Gauss-Newton method. J. Applied Math. Comput., 35: 537-550.
    CrossRef  |  Direct Link  |  
  153. Argyros, I.K. and S. Hilout, 2011. Newton-Kantorovich approximations under weak continuity conditions. J. Applied Math. Comput., 37: 361-375.
    CrossRef  |  Direct Link  |  
  154. Argyros, I.K. and S. Hilout, 2011. Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions. Numer. Algorithms, 58: 23-52.
    CrossRef  |  Direct Link  |  
  155. Argyros, I.K. and S. Hilout, 2011. Extending the applicability of Secant methods and nondiscrete induction. Applied Math. Comput., 218: 3238-3246.
    CrossRef  |  Direct Link  |  
  156. Argyros, I.K. and S. Hilout, 2011. Convergence of directional methods under mild differentiability and applications. Applied Math. Comput., 217: 8731-8746.
    CrossRef  |  Direct Link  |  
  157. Argyros, I.K. and S. Hilout, 2011. Convergence domains under Zabrejko-Zincenko conditions using recurrent functions. Applic. Math., 38: 193-209.
  158. Argyros, I.K. and S. Hilout, 2011. A unifying theorem for Newton's method on spaces with a convergence structure. J. Complexity, 27: 39-54.
    CrossRef  |  Direct Link  |  
  159. Argyros, I.K. and S. Hilout, 2011. A convergence analysis for directional Newton-like methods. Commun. Applied Nonlinear Anal., 18: 23-38.
  160. Argyros, I.K. and S. Hilou, 2011. On the convergence of inexact two-step newton-type methods using recurrent functions. East Asian Math. J., 27: 319-337.
  161. Argyros, I.K. and H. Ren, 2011. On the convergence of a Newton-like method under weak conditions. Commun. Korean Math. Soc., 26: 575-584.
  162. Argyros, I.K. and H. Ren, 2011. Kantorovich-type semilocal convergence analysis for inexact Newton methods. J. Comput. Applied Math., 235: 2993-3005.
    CrossRef  |  Direct Link  |  
  163. Argyros, I.K. and H. Ren, 2011. Improved results for continuous modified Newton-type methods. Mathematica, 53: 3-14.
    Direct Link  |  
  164. Argyros, I.K. and H. Ren, 2011. A relationship between the Lipschitz constants appearing in Taylor's formula. Pure Applied Math., 18: 345-351.
  165. Argyros, I.K. and H. Ren, 2011. A note on the iteratively regularized Gauss-Newton method under center-Lipschitz conditions. Commun. Applied Nonlinear Anal., 18: 89-96.
  166. Argyros, I., Y.J. Cho and S. Hilout, 2011. Newton-Steffensen methods for solving generalized equations. PanAm. Math. J., 21: 45-57.
  167. Tabatabai, M.A. and I.K. Argyros, 2010. Tabaistic regression and its application to the space shuttle Challenger O-ring data. J. Applied Math. Comput., 33: 513-523.
    CrossRef  |  Direct Link  |  
  168. Ren, H. and I.K. Argyros, 2010. On the local convergence of inexact Newton-type methods under residual control-type conditions. J. Comput. Applied Math., 235: 218-228.
    CrossRef  |  Direct Link  |  
  169. Ren, H. and I.K. Argyros, 2010. Local convergence of a secant type method for solving least squares problems. Applied Math. Comput., 217: 3816-3824.
    CrossRef  |  Direct Link  |  
  170. Ren, H. and I.K. Argyros, 2010. Convergence radius of the modified Newton method for multiple zeros under Holder continuous derivative. Applied Math. Comput., 217: 612-621.
    CrossRef  |  Direct Link  |  
  171. Ren, H. and I.K. Argyros, 2010. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators. J. Applied Math. Comput., 34: 39-46.
    CrossRef  |  Direct Link  |  
  172. Khattri, S.K. and I.K. Argyros, 2010. How to develop fourth and seventh order iterative methods? Novi Sad J. Math., 40: 61-67.
    Direct Link  |  
  173. Cho, Y.J., I.K. Argyros and N. Petrot, 2010. Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems. Comput. Math. Applic., 60: 2292-2301.
    CrossRef  |  Direct Link  |  
  174. Chen, J., I.K. Argyros, R.P. Agarwal, 2010. Majorizing functions and two-point Newton-type methods. J. Comput. Applied Math., 234: 1473-1484.
    CrossRef  |  Direct Link  |  
  175. Chen, J. and I.K. Argyros, 2010. Improved results on estimating and extending the radius of an attraction ball. Applied Math. Lett., 23: 404-408.
    CrossRef  |  Direct Link  |  
  176. Argyros, I.K., Y.J. Cho and S. Hilout, 2010. On the midpoint method for solving equations. Applied Math. Comput., 216: 2321-2332.
    CrossRef  |  Direct Link  |  
  177. Argyros, I.K., Y.J. Cho and S. Hilout, 2010. On the convergence of Broyden-like methods using recurrent functions. Numer. Funct. Anal. Optimization, 32: 26-40.
    CrossRef  |  Direct Link  |  
  178. Argyros, I.K., 2010. On the convergence region of Newton's method under Holder continuity conditions Int. J. Comput. Math., 87: 317-326.
    CrossRef  |  Direct Link  |  
  179. Argyros, I.K., 2010. On the convergence of Stirling's-type methods using recurrent functions. Pan-Am. Math. J., 20: 93-105.
  180. Argyros, I.K., 2010. On a class of secant-like methods for solving nonlinear equations. Numer. Algorithms, 54: 485-501.
    CrossRef  |  Direct Link  |  
  181. Argyros, I.K., 2010. Newton's method and interior point techniques. Pan-Am. Math. J., 20: 93-100.
  182. Argyros, I.K., 2010. Local convergence of Newton's method using Kantorovich convex majorants. Revue d'Analyse Numerique Theorie L'approximation, 39: 97-106.
    Direct Link  |  
  183. Argyros, I.K., 2010. Inexact Newton methods and an improved conjugate gradient solver for the normal equations. Nonlinear Funct. Anal. Applic., 2: 155-166.
  184. Argyros, I.K., 2010. Improved estimates on majorizing sequences for the Newton-Kantorovich method. J. Applied Math. Comput., 32: 1-18.
    CrossRef  |  Direct Link  |  
  185. Argyros, I.K., 2010. An improved convergence and complexity analysis for the interpolatory Newton method. CUBO: Math. J., 12: 149-159.
    Direct Link  |  
  186. Argyros, I.K., 2010. An improved convergence analysis for the Newton-Kantorovich method using recurrence relations. Int. J. Comput. Math., 87: 642-652.
    CrossRef  |  Direct Link  |  
  187. Argyros, I.K. and S. Hilout, 2010. On the semilocal convergence of the Gauss-Newton method using recurrent functions. J. Korean Soc. Math. Educ. Ser. B: Pure Applied Math., 17: 307-319.
    Direct Link  |  
  188. Argyros, I.K. and S. Hilout, 2010. On the semilocal convergence of an inverse free Broyden's method. Pan-Am. Math. J., 20: 77-92.
  189. Argyros, I.K. and S. Hilout, 2010. On the semilocal convergence of a Newton-type method of order three. J. Korean Soc. Math. Educ. Ser. B: Pure Applied Math., 17: 1-27.
    Direct Link  |  
  190. Argyros, I.K. and S. Hilout, 2010. On the convergence of Newton-type methods using recurrent functions. Int. J. Comput. Math., 87: 3273-3296.
    CrossRef  |  Direct Link  |  
  191. Argyros, I.K. and S. Hilout, 2010. On Newton-like methods of bounded deterioration using recurrent functions. Aequationes Mathematicae, 79: 61-82.
    CrossRef  |  Direct Link  |  
  192. Argyros, I.K. and S. Hilout, 2010. On Newton's method defined on not necessarily bounded domains. J. Pure Applied Math.: Adv. Applic., 3: 1-16.
    Direct Link  |  
  193. Argyros, I.K. and S. Hilout, 2010. Newton-like method for nonsmooth subanalytic variational inclusions. Mathematica, 52: 5-13.
    Direct Link  |  
  194. Argyros, I.K. and S. Hilout, 2010. Locating roots for a certain class of polynomials. East Asian Math. J., 26: 351-363.
    Direct Link  |  
  195. Argyros, I.K. and S. Hilout, 2010. Local results for a continuous analog of Newton's method. East Asian Math. J., 26: 365-370.
    Direct Link  |  
  196. Argyros, I.K. and S. Hilout, 2010. Inexact Nweton methods and recurrent functions. Applicationes Mathematicae, 37: 113-126.
    Direct Link  |  
  197. Argyros, I.K. and S. Hilout, 2010. Inexact Newton-type methods. J. Complexity, 26: 577-590.
    CrossRef  |  Direct Link  |  
  198. Argyros, I.K. and S. Hilout, 2010. Improved generalized differentiability conditions for Newton-like methods. J. Complexity, 26: 316-333.
    CrossRef  |  Direct Link  |  
  199. Argyros, I.K. and S. Hilout, 2010. Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Applied Math., 234: 2993-3006.
    CrossRef  |  Direct Link  |  
  200. Argyros, I.K. and S. Hilout, 2010. Convergence conditions for the secant method. CUBO: Math. J., 12: 161-174.
    Direct Link  |  
  201. Argyros, I.K. and S. Hilout, 2010. Convergence conditions for secant-type methods. Czechoslovak Math. J., 60: 253-272.
    CrossRef  |  Direct Link  |  
  202. Argyros, I.K. and S. Hilout, 2010. An improved local convergence analysis for Newton-Steffensen-type method. J. Applied Math. Comput., 32: 111-118.
    CrossRef  |  Direct Link  |  
  203. Argyros, I.K. and S. Hilout, 2010. A unified approach for the convergence of certain numerical algorithms, using recurrent functions. Computing, 90: 131-164.
    CrossRef  |  Direct Link  |  
  204. Argyros, I.K. and S. Hilout, 2010. A convergence analysis of Newton-like method for singular equations using recurrent functions. Numer. Funct. Anal. Optimiz., 31: 112-130.
    CrossRef  |  Direct Link  |  
  205. Argyros, I.K. and S. Hilout, 2010. A convergence analysis for directional two-step Newton methods. Numer. Algorithms, 55: 503-528.
    CrossRef  |  Direct Link  |  
  206. Argyros, I.K. and S. Hilout, 2010. A Newton-like method for nonsmooth variational inequalities. Nonlinear Anal.: Theory Methods Applic., 72: 3857-3864.
    CrossRef  |  Direct Link  |  
  207. Argyros, I.K. and S. Hilout, 2010. A Kantorovich-type convergence analysis of the Newton-Josephy method for solving variational inequalities. Numer. Algorithms, 55: 447-466.
    CrossRef  |  Direct Link  |  
  208. Argyros, I.K. and S. Hilout, 2010. A Kantorovich-type analysis of Broyden's method using recurrent functions. J. Applied Math. Comput., 32: 353-368.
    CrossRef  |  Direct Link  |  
  209. Uko, L.U. and I.K. Argyros, 2009. Generalized equations, variational inequalities and a weak Kantorovich theorem. Numer. Algorithms, 52: 321-333.
    CrossRef  |  Direct Link  |  
  210. Uko, L.U. and I.K. Argyros, 2009. A generalized Kantorovich theorem on the solvability of nonlinear equations. Aequationes Mathematicae, 77: 99-105.
    CrossRef  |  Direct Link  |  
  211. Uko, L.U. and I.K. Argyros, 2009. A generalized Kantorovich theorem for nonlinear equations based on function splitting. Rendiconti Circolo Matematico Palermo, 58: 441-451.
    CrossRef  |  Direct Link  |  
  212. Ren, H. and I.K. Argyros, 2009. On convergence of the modified Newton's method under Holder continuous Frechet derivative. Applied Math. Comput., 213: 440-448.
    CrossRef  |  Direct Link  |  
  213. Argyrosm, I.K., 2009. On the local convergence of the midpoint method in Banach spaces under the gamma-condition. Proyecciones J. Math., 28: 155-167.
    CrossRef  |  Direct Link  |  
  214. Argyros, I.K., Y.J. Cho and X. Qin, 2009. On the implicit iterative process for strictly pseudo-contractive mappings in Banach spaces. J. Comput. Applied Math., 233: 208-216.
    CrossRef  |  Direct Link  |  
  215. Argyros, I.K., 2009. On the semilocal convergence of inexact Newton methods in Banach spaces. J. Computat. Applied Math., 228: 434-443.
    CrossRef  |  Direct Link  |  
  216. Argyros, I.K., 2009. On the convergence of Newton's method and locally Holderian inverses of operators. Pure Applied Math., 16: 13-18.
  217. Argyros, I.K., 2009. On a class of Newton-like methods for solving nonlinear equations. J,. Comput. Applied Math., 228: 115-122.
    CrossRef  |  Direct Link  |  
  218. Argyros, I.K., 2009. On Ulm's method using divided differences of order one. Numer. Algorithms, 52: 295-320.
    CrossRef  |  Direct Link  |  
  219. Argyros, I.K., 2009. On Ulm's method for Frechet differentiable operators. J. Applied Math. Comput., 31: 97-111.
    CrossRef  |  Direct Link  |  
  220. Argyros, I.K., 2009. On Newton's method for solving equations containing Frechet-differentiable operators of order at least two. Applied Math. Comput., 215: 1553-1560.
    CrossRef  |  Direct Link  |  
  221. Argyros, I.K., 2009. Finding good starting points for solving equations by Newton's method. Revue d'Analyse Numerique Theorie L'approximation, 38: 3-10.
    Direct Link  |  
  222. Argyros, I.K., 2009. Concerning the convergence of Newton's method and quadratic majorants. J. Applied Math. Comput., 29: 391-400.
    CrossRef  |  Direct Link  |  
  223. Argyros, I.K., 2009. 26. On the Newton Kantorovich theorem and nonlinear finite element methods. Appl. Math., 36: 75-81.
  224. Argyros, I.K., 2009. 17. Convergence of the Newton method for Aubin continuous maps. East Asian J. Math., 25: 153-157.
    Direct Link  |  
  225. Argyros, I.K., 2009. 16. An improved Newton-Kantorovich theorem and interior point methods. East Asian J. Math., 25: 147-151.
    Direct Link  |  
  226. Argyros, I.K. and S. Hilout, 2009. Secant-like method for solving generalized equations. Methods Applic. Anal., 16: 469-478.
    Direct Link  |  
  227. Argyros, I.K. and S. Hilout, 2009. On the weakening of the convergence of Newton's method using recurrent functions. J. Complexity, 25: 530-543.
    CrossRef  |  Direct Link  |  
  228. Argyros, I.K. and S. Hilout, 2009. On the convergence of two-step Newton-type methods of high efficiency index. Applicationes Mathematicae, 36: 465-499.
    Direct Link  |  
  229. Argyros, I.K. and S. Hilout, 2009. On the convergence of some iterative procedures under regular smoothness. PanAm. Math. J., 19: 17-34.
  230. Argyros, I.K. and S. Hilout, 2009. On the convergence of a jarratt-type method using recurrent functions. J. Pure Applied Math.: Adv. Applic., 2: 121-144.
    Direct Link  |  
  231. Argyros, I.K. and S. Hilout, 2009. On the convergence of Steffensen-type methods using recurrent functions. Revue d'Analyse Numerique Theorie L'approximation, 38: 130-143.
    Direct Link  |  
  232. Argyros, I.K. and S. Hilout, 2009. On the convergence of Newton-type methods under mild differentiability conditions. Numer. Algorithms, 52: 701-726.
    CrossRef  |  Direct Link  |  
  233. Argyros, I.K. and S. Hilout, 2009. On multipoint iterative processes of efficiency index higher than Newton's method. J. Nonlinear Sci. Applic., 2: 195-203.
    Direct Link  |  
  234. Argyros, I.K. and S. Hilout, 2009. Newton's method for approximating zeros of vector fields on Riemannian manifolds. J. Applied Math. Comput., 29: 417-427.
    CrossRef  |  Direct Link  |  
  235. Argyros, I.K. and S. Hilout, 2009. Enclosing roots of polynomial equations and their applications to iterative processes. Surveys Math. Applic., 4: 119-132.
    Direct Link  |  
  236. Argyros, I.K. and S. Hilout, 2009. An improved local convergence analysis for a two-step Steffensen-type method. J. Applied Math. Comput., 30: 237-245.
    CrossRef  |  Direct Link  |  
  237. Argyros, I.K. and S. Hilout, 2009. An improved convergence analysis of Newton's method for systems of equations with constant rank derivatives. Mathematica, 51: 99-110.
    Direct Link  |  
  238. Argyros, I.K. and J. Chen, 2009. On local convergence of a Newton-type method in Banach space. Int. J. Comput. Math., 86: 1366-1374.
    CrossRef  |  Direct Link  |  
  239. Argyros, I.K. and H. Ren, 2009. On the convergence of modified Newton methods for solving equations containing a non-differentiable term. J. Comput. Applied Math., 231: 897-906.
    CrossRef  |  Direct Link  |  
  240. Argyros, I.K. and H. Ren, 2009. On an improved local convergence analysis for the Secant method. Numer. Algorithms, 52: 257-271.
    CrossRef  |  Direct Link  |  
  241. Argyros, I. and S. Hilout, 2009. On the local convergence of the Gauss-Newton method. J. Math., 41: 23-33.
    Direct Link  |  
  242. Uko, L.U. and I.K. Argyros, 2008. A weak Kantorovich existence theorem for the solution of nonlinear equations. J. Math. Anal. Applic., 342: 909-914.
    CrossRef  |  Direct Link  |  
  243. Argyros, I.K., 2008. On the solution of nonlinear equations containing a non-differentiable term. East Asian Math. J., 24: 295-304.
    Direct Link  |  
  244. Argyros, I.K., 2008. On the semilocal convergence of a fast two-step Newton method. Revista Colombiana Matematicas, 42: 15-24.
    Direct Link  |  
  245. Argyros, I.K., 2008. On the semi-local convergence of a Newton-type method in banach spaces under a gamma-type condition. J. Concrete Applicable Math., 6: 33-44.
  246. Argyros, I.K., 2008. On the radius of convergence of Newton's method under average mild differentiability conditions. J. Applied Math. Comput., 29: 429-435.
    CrossRef  |  Direct Link  |  
  247. Argyros, I.K., 2008. On the convergence of Newton's method and locally holderian inverses of operators. Pure Applied Math., 15: 111-120.
    Direct Link  |  
  248. Argyros, I.K., 2008. On the comparison of a Kantorovich-type and Moore theorems. J. Applied Math. Comput., 29: 117-123.
    CrossRef  |  Direct Link  |  
  249. Argyros, I.K., 2008. On a two-step Newton method for solving equations under improved Ptak-type estimates. Commun. Applied Nonlinear Anal., 15: 85-93.
  250. Argyros, I.K., 2008. Newton's method in Riemannian manifolds. Revue Anal.Numer. Theor. Approx., 37: 119-125.
    Direct Link  |  
  251. Argyros, I.K., 2008. Local convergence for multistep simplified Newton-like methods. J. Math., 40: 1-7.
    Direct Link  |  
  252. Argyros, I.K., 2008. Improved convergence results for generalized equations. East Asian Math. J., 24: 161-168.
    Direct Link  |  
  253. Argyros, I.K., 2008. Concerning the semilocal convergence of Newton's method and convex majorants. Rendiconti Circolo Matematico Palermo, 57: 331-341.
    CrossRef  |  Direct Link  |  
  254. Argyros, I.K., 2008. Concerning the radii of convergence for a certain class of Newton-like methods. Pure Applied Math., 15: 47-55.
    Direct Link  |  
  255. Argyros, I.K., 2008. Concerning the convergence of Newton method under vertgeim-type conditions. Nonlinear Funct. Anal. Applic., 13: 43-59.
  256. Argyros, I.K., 2008. Approximating solutions of equations by combining Newton like methods. J. Korea Math. Soc. Edu. Ser. B: Pure Applied Math., 15: 35-45.
  257. Argyros, I.K., 2008. An inverse-free Newton-Jarratt-type iterative method for solving equations under the gamma condition. J. Applied Math. Comput., 28: 15-28.
    CrossRef  |  Direct Link  |  
  258. Argyros, I.K., 2008. A semilocal convergence analysis for a certain class of modified Newton processes. East Asian J. Math., 24: 151-160.
    Direct Link  |  
  259. Argyros, I.K., 2008. A refined semilocal convergence analysis of an algorithm for solving the Ricatti equation. J. Applied Math. Compu., 27: 339-344.
    CrossRef  |  Direct Link  |  
  260. Argyros, I.K., 2008. A new semilocal convergence theorem for Newton's method under a gamma-type condition. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 56: 31-40.
  261. Argyros, I.K., 2008. A kantorovich analysis of Newton methods on lie groups. J. Concrete Applicable Math., 6: 21-32.
  262. Argyros, I.K. and S. Hilout, 2008. Steffensen methods for solving generalized equations. Serdica Math. J., 34: 455-466.
    Direct Link  |  
  263. Argyros, I.K. and S. Hilout, 2008. On the local convergence of a two-step Steffensen-type method for solving generalized equations. Proyecciones, 27: 319-330.
    Direct Link  |  
  264. Argyros, I.K. and S. Hilout, 2008. On the local convergence of a Newton-type method in Banach spaces under a gamma-type condition. Proyecciones, 27: 1-14.
    Direct Link  |  
  265. Argyros, I.K. and S. Hilout, 2008. On a secant-like method for solving generalized equations. Mathematica Bohemica, 133: 313-320.
    Direct Link  |  
  266. Argyros, I.K. and S. Hilout, 2008. Multipoint method for generalized equations under mild differentiability conditions. Funct. Approx. Comment. Math., 38: 7-19.
    Direct Link  |  
  267. Argyros, I.K. and S. Hilout, 2008. A cubically convergent method without second order derivative for solving generalized equations. Int. J. Mod. Math., 3: 187-196.
  268. Argyros, I.K. and S. Hilout, 2008. A Frechet derivative-free cubically convergent method for set-valued maps. Numer. Algorithms, 48: 361-371.
    CrossRef  |  Direct Link  |  
  269. Argyros, I.K. and S. Hilout, 2008. 2. On the midpoint method for solving generalized equations. Punj. Univ. J. Mathematics., 40: 63-70.
    Direct Link  |  
  270. Argyros, I.K. and L.U. Uko, 2008. On the convergence of the midpoint method. Numer. Algorithms, 47: 157-167.
    CrossRef  |  Direct Link  |  
  271. Argyros, I.K. and H. Ren, 2008. On a quadratically convergent method using divided differences of order one under the gamma condition. Central Eur. J. Math., 6: 262-271.
    CrossRef  |  Direct Link  |  
  272. Oannis, I., K. Argyros and J.M. Gutierrez, 2007. A unifying local and semilocal convergence analysis of Newton-like methods. Adv. Nonlinear Var. Ineq., 10: 1-12.
  273. Argyros, I.K., 2007. On the solution of variational inequalities on finite dimensional spaces. Adv. Nonlinear Variational Inequalities, 10: 69-77.
  274. Argyros, I.K., 2007. On the local convergence of Newton's method on lie groups. Panamerican Math. J., 17: 101-109.
  275. Argyros, I.K., 2007. On the gap between the semilocal convergence domains of two newton methods. Applic. Math., 34: 193-204.
    Direct Link  |  
  276. Argyros, I.K., 2007. On the convergence of the structured PSB update in Hilbert space. Int. J. Pure Applic. Math., 34: 519-524.
    Direct Link  |  
  277. Argyros, I.K., 2007. On the convergence of the newton-kantorovich method: The generalized Holder case. Nonlinear Stud., 14: 355-364.
    Direct Link  |  
  278. Argyros, I.K., 2007. On the convergence of the Secant method under the gamma condition. Central Eur. J. Math., 5: 205-214.
    CrossRef  |  Direct Link  |  
  279. Argyros, I.K., 2007. On the convergence of broyden-like methods. Acta Mathematica Sinica, 23: 2087-2096.
    CrossRef  |  Direct Link  |  
  280. Argyros, I.K., 2007. On the convergence of Newton's method for a class of nonsmooth operators. J. Comput. Appl. Math., 205: 584-593.
    CrossRef  |  Direct Link  |  
  281. Argyros, I.K., 2007. On a quadratically convergent iterative method using divided differences of order one. Pure Applied Math., 14: 203-221.
    Direct Link  |  
  282. Argyros, I.K., 2007. On a non-smooth version of Newton's method based on Holderian assumptions. Int. J. Comput. Math., 84: 1747-1756.
    CrossRef  |  Direct Link  |  
  283. Argyros, I.K., 2007. Local convergence of Newton's method for generalized equations under Lipschitz conditions on the Frechet derivative. Adv. Nonlinear Var. Ineq., 10: 101-111.
  284. Argyros, I.K., 2007. Improved convergence and complexity analysis of Newton's method for solving equations. Int. J. Comput. Math., 84: 67-73.
    CrossRef  |  Direct Link  |  
  285. Argyros, I.K., 2007. Approximating solutions of equations using Newton's method with a modified Newton's iterate as a starting point. Revue d'Analyse Numerique Eorie L'approximation, 36: 123-138.
    Direct Link  |  
  286. Argyros, I.K., 2007. An improved unifying convergence analysis of Newton's method on Riemannian manifolds. J. Applied Math. Comput., 25: 345-351.
    CrossRef  |  Direct Link  |  
  287. Argyros, I.K., 2007. An improved error analysis for the secant method under the gamma condition. J. Math., 39: 1-11.
    Direct Link  |  
  288. Argyros, I.K., 2007. A refined theorem concerning the conditioning of semidefinite programs. J. Applied Math. Comput., 24: 305-312.
    CrossRef  |  Direct Link  |  
  289. Argyros, I.K., 2007. A note on the solution of a nonlinear singular integral equation with a shift in generalized holder space. Pure Applied Math., 14: 279-282.
    Direct Link  |  
  290. Argyros, I.K., 2007. A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations. J. Math. Anal. Applic, 332: 97-108.
    CrossRef  |  Direct Link  |  
  291. Argyros, I.K. and S. Hilout, 2007. Newton's methods for variational inclusions under conditioned frechet derivative. Applic. Math., 34: 349-357.
    CrossRef  |  
  292. Argyros, I.K. and S. Hilout, 2007. An improved local convergence analysis for secant-like method. East Asian Math. J., 23: 261-270.
    Direct Link  |  
  293. Argyros, I.K., 2006. Relaxing the convergence conditions for Newton-like methods. J. Applied Math. Comput., 21: 119-126.
    CrossRef  |  Direct Link  |  
  294. Argyros, I.K., 2006. On the solution of Variational Inequalities under weak Lipschitz conditions. Adv. Nonlinear Var. Ineq., 9: 85-94.
  295. Argyros, I.K., 2006. On the secant method for solving nonsmooth equations. J. Math. Anal. Applic., 322: 146-157.
    CrossRef  |  Direct Link  |  
  296. Argyros, I.K., 2006. On the convergence of fixed slope iterations. Punj. Univ. J. Math., 38: 39-44.
    Direct Link  |  
  297. Argyros, I.K., 2006. On an improved unified convergence analysis for a certain class of Euler-Halley type methods. Pure Applied Math., 13: 207-215.
  298. Argyros, I.K., 2006. Local convergence of Newton's method under a weak gamma condition. Punjab Univ. J. Math., 38: 1-7.
    Direct Link  |  
  299. Argyros, I.K., 2006. Local convergence of Newton's method for perturbed generalized equations. Pure Applied Math., 13: 261-267.
  300. Argyros, I.K., 2006. Local convergence for the curve tracing of the homotopy method. Revista Colombiana Matematicas, 40: 105-110.
    Direct Link  |  
  301. Argyros, I.K., 2006. Convergence of Newton's method under the gamma condition. Proyecciones, 25: 293-306.
    Direct Link  |  
  302. Argyros, I.K., 2006. An improved convergence analysis of a superquadratic method for solving generalized equations. Revista Colombiana Matematicas, 40: 65-73.
    Direct Link  |  
  303. Argyros, I.K., 2006. A weaker version of the shadowing lemma for operators with chaotic behaviour. Int. J. Pure Applied Math., 28: 417-422.
    Direct Link  |  
  304. Argyros, I.K., 2006. A weaker affine covariant Newton-Mysovskikh theorem for solving equations. Applied Math., 33: 355-363.
  305. Argyros, I.K., 2006. A semilocal convergence analysis for Newton LP methods. Adv. Nonlinear Var. Ineq., 9: 75-84.
  306. Argyros, I.K., 2006. A refined Newton's mesh independence principle for a class of optimal shape design problems. Open Math., 4: 562-572.
    CrossRef  |  Direct Link  |  
  307. Argyros, I.K., 2006. A fine convergence analysis for inexact Newton methods. Functiones Approximatio Commentari Mathematici, 36: 7-31.
    Direct Link  |  
  308. Argyros, I.K., 2006. A convergence analysis of a Newton-like method without inverses. Int. J. Pure Applied Math., 30: 143-149.
    Direct Link  |  
  309. Argyros, I.K., 2006. A convergence analysis and applications for two-point Newton-like methods in Banach space under relaxed conditions. Aequat. Math., 70: 124-148.
    CrossRef  |  Direct Link  |  
  310. Argyros, I.K., 2005. Toward a unified convergence theory for Newton-like methods of bounded deteriation. Adv. Nonlinear Var. Ineq., 8: 109-120.
  311. Argyros, I.K., 2005. On the semilocal convergence of the secant method under relaxed conditions. Adv. Nonlinear Var. Ineq., 8: 119-132.
  312. Argyros, I.K., 2005. On the semilocal convergence of Newton's method under weak Lipschitz continuous derivative. Adv. Nonlinear Var. Ineq., 8: 71-82.
  313. Argyros, I.K., 2005. On the convergence of Newton's method under twice-Frechet differentiability only at a point. Comm. Applied Nonlinear Anal., 12: 51-58.
  314. Argyros, I.K., 2005. On some theorems concerning the convergence of Newton methods. Adv. Nonlinear Var. Ineq., 8: 83-94.
  315. Argyros, I.K., 2005. On a two-point Newton-like method of convergence order two. Int. J. Comput. Math., 88: 219-234.
    CrossRef  |  Direct Link  |  
  316. Argyros, I.K., 2005. New sufficient convergence conditions for the secant method. Chechoslovak Math. J., 55: 175-187.
  317. Argyros, I.K., 2005. Enlarging the radius of convergence for iterative methods by using a one parameter operator imbedding. Adv. Nonlinear Var. Ineq., 8: 75-80.
  318. Argyros, I.K., 2005. Enlarging the convergence domain of Newton's method under regular smoothness conditions. Adv. Nonlinear Var. Ineq., 8: 121-129.
  319. Argyros, I.K., 2005. Ball convergence theorems for Newton's method involving outer or generalized inverses. Adv. Nonlinear Var. Ineq., 8: 61-68.
  320. Argyros, I.K., 2005. An improved approach of obtaining good starting points for solving equations by Newton's method. Adv. Nonlinear Var. Ineq., 8: 111-118.
  321. Argyros, I.K., 2005. An application of a weak variant of the Newton-Kantorovich theorem to nonlinear finite element analysis. Math. Sci. Res. J., 9: 330-337.
  322. Argyros, I.K., 2005. A unified approach for enlarging the radius of convergence for Newton's method and applications. Nonlinear Funct. Anal. Applic., 10: 555-563.
  323. Argyros, I.K., 2005. A semilocal convergence analysis of Newton's method involving operators with values in a cone. Adv. Nonlinear Var. Ineq., 8: 53-59.
  324. Argyros, I.K., 2005. A semilocal convergence analysis for the method of tangent parabolas. Rev. Anal. Numer. Theor. Approx., 34: 3-15.
    Direct Link  |  
  325. Argyros, I.K., 2005. A semilocal convergence analysis for a deformed Newton method. Math. Sci. Res. J., 9: 217-222.
  326. Argyros, I.K., 2005. A new iterative method of asymptotic order 1+√2 for the computation of fixed points. Int. J. Comput. Math., 82: 1413-1428.
  327. Argyros, I.K., 2005. A new approach for finding weaker conditions for the convergence of Newton's method. Applic. Math., 32: 465-475.
  328. Argyros, I.K., 2005. A convergence analysis for Newton-like methods for singular equations using outer or generalized inverses. Applc. Math., 32: 37-49.
  329. Zhengda, H. and I.K. Argyros, 2004. On two improved Durand-Kerner methods without derivatives. Comm. Appl. Nonlinear Anal., 11: 43-48.
  330. Argyros, I.K., 2004. Weak sufficient convergence conditions and applications for newton methods. J. Applied Math. Comput., 16: 1-17.
    CrossRef  |  Direct Link  |  
  331. Argyros, I.K., 2004. Some convergence theorems for Newton's method involving center-Lipschitz conditions. Panamer. Math. J., 14: 75-84.
  332. Argyros, I.K., 2004. On the convergence of iterates to fixed points of analytic operators. Revue. Anal. Numer. Theor. Approx., 33: 11-17.
    Direct Link  |  
  333. Argyros, I.K., 2004. On the convergence of a certain class of Steffensen iterative methods for solving equations. Math. Sci. Res. J., 8: 55-66.
  334. Argyros, I.K., 2004. On the comparison of a weak variant of the Newton-Kantorovich and Miranda theorems. J. Comput. Appl. Math., 166: 585-589.
    CrossRef  |  Direct Link  |  
  335. Argyros, I.K., 2004. On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Applied Math., 169: 315-332.
    CrossRef  |  Direct Link  |  
  336. Argyros, I.K., 2004. On a weak Newton-Kantorovich-type theorem for solving nonlinear equations in Banach space. Adv. Nonlinear Var. Ineq., 7: 101-109.
  337. Argyros, I.K., 2004. On a Newton-Kantorovich-type theorem for solving equations in a Banach space and applications. Adv. Nonlinear Var. Ineq., 7: 79-88.
  338. Argyros, I.K., 2004. Local-semilocal convergence theorems for Newton's method in Banach space and applications. Adv. Nonlinear Var. Ineq., 7: 121-132.
  339. Argyros, I.K., 2004. Improved convergence analysis for the Secant method based on a certain type of recurrence relations. Int. J. Comput. Math., 81: 629-637.
    CrossRef  |  Direct Link  |  
  340. Argyros, I.K., 2004. Approximating solutions of equations using two-point newton methods. Appl. Num. Anal. Comput. Math., 1: 386-412.
    CrossRef  |  Direct Link  |  
  341. Argyros, I.K., 2004. An iterative method for computing zeros of operators satisfying autonomous differential equations. Southwest J. Pure Appl. Math., 1: 48-53.
    Direct Link  |  
  342. Argyros, I.K., 2004. A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Applc., 298: 374-397.
    CrossRef  |  Direct Link  |  
  343. Argyros, I.K., 2004. A convergence analysis for a certain class of quasi-Newton generalized Steffensen iterative methods. Adv. Nonlinear Var. Ineq., 7: 133-142.
  344. Argyros, I.K., 2004. A convergence analysis and applications of Newton-like methods under generalized Chen-Yamamoto-type assumptions. Int. J. Appl. Math. Sci., 1: 13-26.
  345. Argyros, I.K., 2004. A convergence analysis and applications for the Newton-Kantorovich method in K-normed spaces. Rendiconti del Circolo Mathematica di Palermo, 53: 251-271.
    CrossRef  |  Direct Link  |  
  346. Argyros, I.K., 2004. A note on a new way of enlarging the convergence radius for Newton's method. Math. Sci. Res. J., 8: 147-153.
  347. Argyros, I.K., 2003. Semilocal convergence for Newton's method on a Banach space with a convergence structure and twice Frechet differentiable operators. Southwest J. Pure Applied Mathe., 1: 88-95.
    Direct Link  |  
  348. Argyros, I.K., 2003. On the convergence and application of Stirling's method. Appl. Math., 30: 109-119.
    CrossRef  |  Direct Link  |  
  349. Argyros, I.K., 2003. On the convergence and application of Newton's method under weak Holder continuity assumptions Int. J. Comput. Math., 80: 767-780.
    CrossRef  |  Direct Link  |  
  350. Argyros, I.K., 2003. On an improved variant of the L.V. Kantorovich theorem for Newton's method. Mat. Sci. Res. J., 7: 400-405.
  351. Argyros, I.K., 2003. On an application of a fixed point theorem to the convergence of inexact Newton-like methods. Comm. Appl. Nonlinear Anal., 10: 101-108.
  352. Argyros, I.K., 2003. On a theorem of L.V. Kantorovich concerning Newton's method. J. Comput. Appl. Math., 155: 223-230.
    CrossRef  |  Direct Link  |  
  353. Argyros, I.K., 2003. On a multistep Newton method in Banach spaces and the Ptak error estimates. Adv. Nonlinear Var. Ineq., 6: 121-135.
  354. Argyros, I.K., 2003. New and generalized convergence conditions for the Newton-Kantorovich method. J. Appl. Anal., 9: 287-299.
    CrossRef  |  Direct Link  |  
  355. Argyros, I.K., 2003. Concerning the convergence of Newton's method and logarithmic convexity. Panamerican Math. J., 13: 35-42.
  356. Argyros, I.K., 2003. An improved error analysis for Newton-like methods under generalized conditions. J. Comput. Applied Mathe., 157: 169-185.
    CrossRef  |  Direct Link  |  
  357. Argyros, I.K., 2003. An improved convergence analysis and applications for newton-like methods in banach space. Numer. Funct. Anal. Optimiz., 24: 653-672.
    CrossRef  |  Direct Link  |  
  358. Argyros, I.K., 2003. A convergence analysis of an iterative algorithm of order 1.839... under weak assumptions. Rev. Anal. Numer. Theor. Approx., 32: 123-134.
  359. Argyros, I.K., 2003. A local convergence analysis and applications of Newton's method under weak assumptions. Southwest J. Pure Applied Mathe., 1: 82-87.
  360. Argyros, I.K., 2002. On the convergence of a Newton-like method based on m-Frechet differentiable operators and applications in radiative transfer. J. Comput. Anal. Appli., 4: 141-154.
    CrossRef  |  Direct Link  |  
  361. Argyros, I.K., 2001. Semilocal convergence theorems for Newton's method using outer inverses and hypotheses on the second Frechet-derivative. Monatshefte fur Mathematik, 132: 183-195.
    CrossRef  |  Direct Link  |  
  362. Argyros, I.K., 2001. On the radius of convergence of Newton's method. Int. J. Comput. Math., 77: 389-400.
    CrossRef  |  Direct Link  |  
  363. Argyros, I.K., 2001. Local convergence theorems for Newton methods. Korean J. Comp. Appl. Math., 8: 253-268.
    CrossRef  |  Direct Link  |  
  364. Argyros, I.K., 2001. Local and semilocal convergence theorems for Newton's method based on continuously Frechet-differentiable operators. Southwest J. Pure Appl. Math., 2001: 22-28.
    Direct Link  |  
  365. Argyros, I.K., 2001. An error analysis for a certain class of iterative methods. Korean J. Comput. Appl. Math., 8: 519-529.
    CrossRef  |  Direct Link  |  
  366. Argyros, I.K., 2001. A new semilocal convergence theorem for Newton's method in Banach space using hypotheses on the second Frechet-derivative. J. Comput. Appl. Math., 130: 369-373.
    CrossRef  |  Direct Link  |  
  367. Argyros, I.K., 2001. A mesh independence principle for inexact Newton-type methods and their discretizations. Ann. Univ. Sci. Budapest, Sect. Comp., 20: 31-53.
    Direct Link  |  
  368. Argyros, I.K., 2001. A Newton-Kantorovich theorem for equations involving m-Frechet differentiable operators and applications in radiative transfer. J. Comput. Appli. Math., 131: 149-159.
    CrossRef  |  Direct Link  |  
  369. Argyros, I.K., 2000. The effect of rounding errors on Newton methods. Korean J. Comp. Appl. Math., 7: 533-540.
    CrossRef  |  Direct Link  |  
  370. Argyros, I.K., 2000. The Chebyshev method in Banach spaces and the Ptak error estimates. Adv. Nonlinear Var. Ineq., 3: 15-25.
  371. Argyros, I.K., 2000. Steffensen's method on special Banach spaces. Comm. Appl. Nonlinear Anal., 7: 49-58.
  372. Argyros, I.K., 2000. Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses. Korean J. Comp. Appl. Math., 71: 29-40.
  373. Argyros, I.K., 2000. Perturbed Steffensen-Aitken projection methods for solving equations with nondifferentiable operators. Punj. Univ. J. Math., 33: 105-113.
  374. Argyros, I.K., 2000. On the monotone convergence of a Chebysheff-Halley-type method in partially ordered topological spaces Ann. Univ. Sci. Budapest. Sect. Comp., 19: 143-154.
    Direct Link  |  
  375. Argyros, I.K., 2000. On the local convergence of m-step Newton methods with applications on a vector supercomputer Adv. Nonlinear Var. Ineq., 3: 27-33.
  376. Argyros, I.K., 2000. On the convergence of disturbed Newton-like methods in Banach space PanAmer. Math. J., 10: 31-39.
  377. Argyros, I.K., 2000. On the convergence of an Euler-Chebysheff-type method using divided differences of order one Comm. Appl. Nonlinear Anal., 7: 71-86.
  378. Argyros, I.K., 2000. On the convergence of Steffensen-Galerkin methods Atti del seminario Matematica e Fisico dell'universita di Modena 11: 355-370.
  379. Argyros, I.K., 2000. On some general iterative methods for solving nonlinear operator equations containing a nondifferentiable term. Adv. Nonlinear Var. Inequal., 3: 15-21.
  380. Argyros, I.K., 2000. Newton methods on Banach spaces with a convergence structure and applications. Comput. Math. Appli., 40: 37-48.
    CrossRef  |  Direct Link  |  
  381. Argyros, I.K., 2000. Local convergence theorems of Newton's method for nonlinear equations using outer or generalized inverses. Chechoslovak Math. J., 50: 603-614.
    CrossRef  |  Direct Link  |  
  382. Argyros, I.K., 2000. Local convergence of inexact Newton-like iterative methods and applications Comput. Math. Appl., 39: 69-75.
    CrossRef  |  Direct Link  |  
  383. Argyros, I.K., 2000. Improving the rate of convergence of Newton-like methods in Banach space using twice Frechet-differentiable operators and applications. PanAmer. Math. J., 10: 51-59.
  384. Argyros, I.K., 2000. Improving the order of convergence of Newton's method for a certain class of polynomial equations. SooChow J. Math., 26: 117-122.
  385. Argyros, I.K., 2000. Improved error bounds for Newton's method under hypotheses on the second Frechet-derivative. Adv. Nonlinear Var. Ineq., 3: 37-45.
  386. Argyros, I.K., 2000. Forcing sequences and inexact Newton iterates in Banach space. Appl. Math. Lett., 13: 77-80.
    CrossRef  |  Direct Link  |  
  387. Argyros, I.K., 2000. Extending the region of convergence for a certain class of modified iterative methods on Banach space and applications. Adv. Nonlinear Var. Ineq., 3: 1-5.
  388. Argyros, I.K., 2000. Error bounds for the Halley-Werner method in Banach spaces. Comm. Appl. Nonlinear Anal., 7: 73-85.
  389. Argyros, I.K., 2000. Error bounds for the Halley method in Banach spaces. Adv. Nonlinear Var. Ineq., 3: 1-13.
  390. Argyros, I.K., 2000. Convergence theorems for Newton-like methods under generalized Newton-Kantorovich conditions Adv. Nonlinear Var. Ineq., 3: 35-42.
  391. Argyros, I.K., 2000. Conditions for the convergence of perturbed Steffensen methods on a Banach space with a convergence structure. Adv. Nonlinear Var. Inequal., 3: 23-35.
  392. Argyros, I.K., 2000. Concerning the monotone convergence of the method of tangent hyperbolas. Korean J. Comp. Appl. Math., 7: 407-418.
    CrossRef  |  Direct Link  |  
  393. Argyros, I.K., 2000. Choosing the forcing sequences for inexact Newton methods in Banach space. Comput. Appl. Math., 19: 79-89.
    Direct Link  |  
  394. Argyros, I.K., 2000. Approximate solutions of equations by a Stirling method Bull. Inst. Math. Acad. Sinica, 28: 249-256.
    Direct Link  |  
  395. Argyros, I.K., 2000. A unifying semilocal convergence theorem for Newton-like methods in Banach space. PanAmer. Math. J., 10: 95-101.
  396. Argyros, I.K., 2000. A new convergence theorem for the Steffensen method in Banach space and applications. Rev. Anal. Numer. Theor. Approx, 29: 119-127.
  397. Argyros, I.K., 2000. A mesh independence principle for perturbed Newton-like methods and their discretizations. Korean J. Comp. Appl. Math., 7: 139-159.
    CrossRef  |  Direct Link  |  
  398. Argyros, I.K., 2000. A convergence theorem for Steffensen's method and the Ptak error estimates Adv. Nonlinear Var. Ineq., 3: 43-51.
  399. Argyros, I.K., 2000. A convergence theorem for Newton-like methods in Banach space under general weak assumptions and applications Comm. Appl. Anal., 7: 57-72.
  400. Argyros, I., 2000. The effect of rounding errors on a certain class of iterative methods Appli. Math., 27: 369-375.
    Direct Link  |  
  401. Argyros, I., 2000. Semilocal convergence theorems for a certain class of iterative procedures involving m-Frechet differentiable operators. Math. Sci. Res. Hot-Line, 4: 1-12.
  402. Argyros, I., 2000. Semilocal convergence theorems for Newton's method using outer inverses and hypotheses on the mth Frechet-derivative. Math. Sci. Res. Hot-Line, 4: 33-45.
  403. Argyros, I., 2000. Relaxing convergence conditions of Newton-like methods for solving equations under weakened assumptions. Math. Sci. Res. Hot-Line, 4: 55-64.
  404. Argyros, I., 2000. On a class of nonlinear implicit quasivariational inequalities. Pan. Am. Math. J., 10: 101-109.
  405. Argyros, I., 2000. Local convergence theorems for Newton's method using outer or generalized inverses and m-Frechet differentiable operators. Math. Sci. Res. Hot-Line, 4: 47-56.
  406. Argyros, I., 2000. Local convergence of a certain class of iterative methods and applications. Math. Sci. Res. Hot-Line, 4: 9-16.
  407. Argyros, I., 2000. Forcing sequences and inexact iterates involving m-Frechet differentiable operators Math. Sci. Res. Hot-Line, 4: 35-46.
  408. Argyros, I., 2000. Enlarging the radius of convergence for Newton's method Math. Sci. Res. Hot-Line, 4: 29-40.
  409. Argyros, I., 2000. Convergence theorems for Newton's method without Lipschitz conditions and hypotheses on the first Frechet-derivative. Math. Sci. Res. Hot-Line, 4: 41-50.
  410. Argyros, I., 2000. Convergence results for Newton's method involving smooth operators. Math. Sci. Res. Hot-Line, 4: 35-43.
  411. Argyros, I., 2000. Convergence domains of Newton-like methods for solving equations under weakened assumptions. Math. Sci. Res. Hot-Line, 4: 64-73.
  412. Argyros, I., 2000. Choosing the forcing sequences for inexact Newton methods and m-Frechet differentiable operators. Math. Sci. Res. Hot-Line, 4: 1-8.
  413. Argyros, I., 2000. Approximation-solvability of nonlinear variational inequalities and partially relaxed monotone mappings. Comm. Appl. Nonlinear Anal., 7: 1-10.
  414. Argyros, I., 2000. A new semilocal convergence theorem for Newton's method using hypotheses on the m-Frechet derivative. Math. Sci. Res. Hot-Line, 4: 57-61.
  415. Argros, I., 2000. Accessibility of solutions of equations on Banach spaces by Newton-like methods and applications. Bull. Inst. Math. Acad. Sinica, 28: 9-20.
    Direct Link  |