Dr. Wen-Xiu  Ma
My Social Links

Dr. Wen-Xiu Ma

Professor
University of South Florida, USA


Highest Degree
PostDoc Fellow in Applied Mathematics from University of Paderborn, Germany

Share this Profile

Biography

Wen-Xiu Ma is Professor of Mathematics at University of South Florida, USA and Oversea Chair Professor of Shanghai University of Electric Power, PR China. He received his undergraduate degree from University of Science and Technology of China, Hefei, in 1982, and earned his Ph.D. from Computer Center of Chinese Academy of Sciences in Beijing, China, in 1990. He received a youth award from the International Mathematical Union in 1993, the Alexander-von Humboldt research fellowship in Germany in 1993, and the Shanghai Government Qimingxing fellowship in 1994. He is currently editor-in-chief of Journal of Applied Mathematics and Physics and Studies in Nonlinear Sciences.

Professor Ma’s research ranges from mathematical physics through applied mathematics to computations. He published about 250 research articles and 4 monographs. His one recent article was selected as one of the 100 most influential international papers by China Ministry of Science and Technology in 2010 and featured as a Fast Breaking Paper in 2011 by ScienceWatch.com. He has made Thomson Reuters’ 2015 list as one of the world’s most highly cited researchers (http://highlycited.com/). He has been reviewer or panelist for science foundations of different counties including China, USA, Japan, Turkey, Canada, Chile, England, Holland, Saudi Arabia, and Kazakhstan, reviewer for Mathematical Reviews and Zentralblatt MATH, and referee for hundreds of scientific journals about mathematics, physics and engineering sciences. He gave numerous invited talks at international conferences, and was the keynote speaker of the 6th World Congress of Nonlinear Analysts held in Athens, Greece, in 2012.

Area of Interest:

Physical Science Engineering
100%
Differential Equation
62%
Symmetry Constraints
90%
Symmetries
75%
Conservation Laws
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Ma, W.X. and B. Shekhtman, 2010. Do the chain rules for matrix functions hold without commutativity? Linear Multilinear Algebra, 58: 79-87.
    CrossRef  |  Direct Link  |  
  2. Ma, W.X., X. Gu and L. Gao, 2009. A note on exact solutions to linear differential equations by the matrix exponential. Adv. Applied Math. Mech., 1: 573-580.
    Direct Link  |  
  3. Ma, W.X., R. Zhou and L. Gao, 2009. Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+ 1) dimensions. Modern Phys. Lett. A, 24: 1677-1688.
    CrossRef  |  Direct Link  |  
  4. Ma, W.X., C.X. Li and J. He, 2009. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal.: Theory Methods Applic., 70: 4245-4258.
    CrossRef  |  Direct Link  |  
  5. Ma, W.X., 2009. Multi-component bi-Hamiltonian Dirac integrable equations. Chaos Solitons Fractals, 39: 282-287.
    CrossRef  |  Direct Link  |  
  6. Ma, W.X. and L. Gao, 2009. Coupling integrable couplings. Modern Phys. Lett. B, 23: 1847-1860.
    CrossRef  |  Direct Link  |  
  7. Ma, W.X. and J.H. Lee, 2009. A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals, 42: 1356-1363.
    CrossRef  |  Direct Link  |  
  8. Ma, W.X., J.S. He and Z.Y. Qin, 2008. A supertrace identity and its applications to superintegrable systems. J. Math. Phys., Vol. 49. 10.1063/1.2897036.
    CrossRef  |  Direct Link  |  
  9. Ma, W.X., 2008. An application of the Casoratian technique to the 2D Toda lattice equation. Modern Phys. Lett. B, 22: 1815-1825.
    CrossRef  |  Direct Link  |  
  10. Ma, W.X., 2008. A multi-component Lax integrable hierarchy with Hamiltonian structure. Pac. J. Applied Math., 1: 69-75.
  11. Luo, L., W.X. Ma and E.G. Fan, 2008. The algebraic structure of zero curvature representations associated with integrable couplings. Int. J. Modern Phys. A, 23: 1309-1325.
    CrossRef  |  Direct Link  |  
  12. Ma, W.X., H.Y. Wu and J.S. He, 2007. Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A, 364: 29-32.
    CrossRef  |  Direct Link  |  
  13. Ma, W.X., 2007. A discrete variational identity on semi-direct sums of Lie algebras. J. Phys. A: Math. Theor., 40: 15055-15069.
  14. Ma, W.X., 2007. A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order. Phys. Lett. A, 367: 473-477.
    CrossRef  |  Direct Link  |  
  15. Ma, W.X. and M. Chen, 2007. Do symmetry constraints yield exact solutions? Chaos Solitons Fractals, 32: 1513-1517.
    CrossRef  |  Direct Link  |  
  16. Ma, W.X. and B. Shekhtman, 2007. A linear system arising from a polynomial problem and its applications. Chin. Ann. Math. Ser. B, 28: 283-292.
    CrossRef  |  Direct Link  |  
  17. Li, C.X., W.X. Ma, X.J. Liu and Y.B. Zeng, 2007. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Problems, 23: 279-296.
  18. He, J., K. Tian, A. Foerster and W.X. Ma, 2007. Additional symmetries and string equation of the CKP hierarchy. Lett. Math. Phys., 81: 119-134.
    CrossRef  |  Direct Link  |  
  19. Damelinm, S.B. and W.X. Ma, 2007. Preface [Special issue: Topics in integrable systems]. J. Comput. Applied Math., 202: 1-2.
  20. Ma, W.X., X.X. Xu and Y. Zhang, 2006. Semidirect sums of Lie algebras and discrete integrable couplings. J. Math. Phys., Vol. 47. 10.1063/1.2194630.
    CrossRef  |  Direct Link  |  
  21. Ma, W.X., X.X. Xu and Y. Zhang, 2006. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys. Lett. A, 351: 125-130.
    CrossRef  |  Direct Link  |  
  22. Ma, W.X. and M. Chen, 2006. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A: Math. Gen., 39: 10787-10801.
    Direct Link  |  
  23. Ma, W.X. and H. Wu, 2006. Time-space integrable decompositions of nonlinear evolution equations. J. Math. Anal. Applic., 324: 134-149.
    CrossRef  |  Direct Link  |  
  24. Ma, W.X., 2005. Integrable couplings of vector AKNS soliton equations. J. Math. Phys., Vol. 46. 10.1063/1.1845971.
    CrossRef  |  Direct Link  |  
  25. Ma, W.X., 2005. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos Solitons Fractals, 26: 1453-1458.
    CrossRef  |  Direct Link  |  
  26. Ma, W.X. and Y. You, 2005. Solving the korteweg-de vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc., 357: 1753-1778.
    Direct Link  |  
  27. Ma, W.X. and W. Strampp, 2005. Bilinear forms and Backlund transformations of the perturbation systems. Phys. Lett. A, 341: 441-449.
    CrossRef  |  Direct Link  |  
  28. Maruno, K.I., W.X. Ma and M. Oikawa, 2004. Generalized Casorati determinant and positon-negaton-type solutions of the Toda lattice equation. J. Phys. Soc. Japan, 73: 831-837.
    Direct Link  |  
  29. Ma, W.X., 2004. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation. Chaos Solitons Fractals, 19: 163-170.
    CrossRef  |  Direct Link  |  
  30. Ma, W.X. and Y. You, 2004. Rational solutions of the Toda lattice equation in Casoratian form. Chaos Solitons Fractals, 22: 395-406.
    CrossRef  |  Direct Link  |  
  31. Ma, W.X. and X.X. Xu, 2004. Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair. Int. J. Theor. Phys., 43: 219-235.
    CrossRef  |  Direct Link  |  
  32. Ma, W.X. and X.X. Xu, 2004. A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations. J. Phys. A: Math. Gen., 37: 1323-1336.
    Direct Link  |  
  33. Ma, W.X. and K.I. Maruno, 2004. Complexiton solutions of the Toda lattice equation. Phys. A: Stat. Mech. Applic., 343: 219-237.
    CrossRef  |  Direct Link  |  
  34. Ma, W.X., 2003. Soliton, positon and negaton solutions to a Schrodinger self-consistent source equation. J. Phys. Soc. Japan, 72: 3017-3019.
    Direct Link  |  
  35. Ma, W.X., 2003. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A, 316: 72-76.
    CrossRef  |  Direct Link  |  
  36. Ma, W.X., 2003. Diversity of exact solutions to a restricted Boiti-Leon-Pempinelli dispersive long-wave system. Phys. Lett. A., 319: 325-333.
    CrossRef  |  Direct Link  |  
  37. Gilson, C.R., X.B. Hu, W.X. Ma and H.W. Tam, 2003. Two integrable differential-difference equations derived from the discrete BKP equation and their related equations. Phys. D: Nonlinear Phenomena, 175: 177-184.
    CrossRef  |  Direct Link  |  
  38. Gao, P., B.L. Guo and W.X. Ma, 2003. Persistent homoclinic orbits for perturbed nonlinear schroding equation with derivative term. Adv. Math. (China), 32: 253-256.
  39. Blaszak, M. and W.X. Ma, 2003. Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems. J. Geometry Phys., 47: 21-42.
    CrossRef  |  Direct Link  |  
  40. Zeng, Y.B., Y.J. Shao and W.X. Ma, 2002. Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources. Commun. Theor. Phys., 38: 641-648.
  41. Maruno, K.I. and W.X. Ma, 2002. Bilinear forms of integrable lattices related to Toda and Lotka-Volterra lattices. J. Nonlinear Math. Phys., 9: 127-139.
    CrossRef  |  Direct Link  |  
  42. Ma, W.X., 2002. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A, 301: 35-44.
    CrossRef  |  Direct Link  |  
  43. Ma, W.X., 2002. A bi-Hamiltonian formulation for triangular systems by perturbations. J. Math. Phys., 43: 1408-1421.
    CrossRef  |  Direct Link  |  
  44. Ma, W.X. and R. Zhou, 2002. Binary nonlinearization of spectral problems of the perturbation AKNS systems. Chaos Solitons Fractals, 13: 1451-1463.
    CrossRef  |  Direct Link  |  
  45. Ma, W.X. and R. Zhou, 2002. Adjoint symmetry constraints leading to binary nonlinearization. J. Nonlinear Math. Phys., 9: 106-126.
    CrossRef  |  Direct Link  |  
  46. Ma, W. and R. Zhou, 2002. Adjoint symmetry constraints of multicomponent AKNS equations. Chin. Ann. Math., 23: 373-384.
    CrossRef  |  Direct Link  |  
  47. Lin, R., W.X. Ma and Y. Zeng, 2002. Higher order potential expansion for the continuous limits of the Toda hierarchy. J. Phys. A: Math. Gen., 35: 4915-4928.
    Direct Link  |  
  48. Li, Y. and W.X. Ma, 2002. A nonconfocal involutive system and constrained flows associated with the MKdV-equation. J. Math. Phys., 43: 4950-4962.
    CrossRef  |  Direct Link  |  
  49. Hu, X.B. and W.X. Ma, 2002. Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys. Lett. A, 293: 161-165.
    CrossRef  |  Direct Link  |  
  50. Blaszak, M. and W.X. Ma, 2002. New Liouville integrable noncanonical Hamiltonian systems from the AKNS spectral problem. J. Math. Phys., 43: 3107-3123.
    CrossRef  |  Direct Link  |  
  51. Zhou, Z., W.X. Ma and R. Zhou, 2001. Finite-dimensional integrable systems associated with the Davey-Stewartson I equation. Nonlinearity, 14: 701-717.
    Direct Link  |  
  52. Zhou, Z. and W.X. Ma, 2001. Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints. J. Phys. Soc. Japan, 70: 1241-1245.
    Direct Link  |  
  53. Zeng, Y., W.X. Ma and Y. Shao, 2001. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J. Math. Phys., 42: 2113-2128.
    CrossRef  |  Direct Link  |  
  54. Ma, W.X. and Z. Zhou, 2001. Binary symmetry constraints of N-wave interaction equations in 1+ 1 and 2+ 1 dimensions. J. Math. Phys., 42: 4345-4382.
    CrossRef  |  Direct Link  |  
  55. Ma, W.X. and S.M. Zhu, 2001. Non-symmetry constraints of the AKNS system yielding integrable Hamiltonian systems. Chaos Solitons Fractals, 12: 67-72.
    CrossRef  |  Direct Link  |  
  56. Ma, W.X. and R. Zhou, 2001. On the relationship between classical Gaudin models and BC-type Gaudin models. J. Phys. A: Math. Gen., 34: 867-880.
    Direct Link  |  
  57. Ma, W.X. and R. Zhou, 2001. Nonlinearization of spectral problems for the perturbation KdV systems. Phys. A: Stat. Mech. Applic., 296: 60-74.
    CrossRef  |  Direct Link  |  
  58. Lin, R., Y. Zeng and W.X. Ma, 2001. Solving the KdV hierarchy with self-consistent sources by inverse scattering method. Phys. A: Stat. Mech. Applic., 291: 287-298.
    CrossRef  |  Direct Link  |  
  59. Zhou, R. and W.X. Ma, 2000. The r-matrix structure of the restricted coupled AKNS-Kaup-Newell flow. Applied Math. Lett., 13: 131-135.
    CrossRef  |  Direct Link  |  
  60. Zhou, R. and W.X. Ma, 2000. Classical r-matrix structures of integrable mappings related to the Volterra lattice. Phys. Lett. A, 269: 103-111.
    CrossRef  |  Direct Link  |  
  61. Zhou, R. and W.X. Ma, 2000. Algebra-geometric solutions of the (2+ 1)-dimensional Gardner equation. Nuovo Cimento B, 115: 1419-1431.
    Direct Link  |  
  62. Zeng, Y., W.X. Ma and R. Lin, 2000. Integration of the soliton hierarchy with self-consistent sources. J. Math. Phys., 41: 5453-5489.
    CrossRef  |  Direct Link  |  
  63. Tamizhmani, K.M. and W.X. Ma, 2000. Master symmetries from Lax operators for certain lattice soliton hierarchies. J. Phys. Soc. Japan, 69: 351-361.
    CrossRef  |  Direct Link  |  
  64. Tam, H.W., W.X. Ma, X.B. Hu and D.L. Wang, 2000. The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited. J. Phys. Soc. Japan, 69: 45-52.
    CrossRef  |  Direct Link  |  
  65. Ma, W.X., 2000. Integrable couplings of soliton equations by perturbations I-A general theory and application to the KdV hierarchy. Methods Applic. Anal., 7: 21-56.
    Direct Link  |  
  66. Ma, W.X. and Y. Li, 2000. Do symmetry constraints nonlinearize spectral problems into Hamiltonian systems? Phys. Lett. A, 268: 352-359.
    CrossRef  |  Direct Link  |  
  67. Ma, W.X. and X. Geng, 2000. New completely integrable Neumann systems related to the perturbation KdV hierarchy. Phys. Lett. B, 475: 56-62.
    CrossRef  |  Direct Link  |  
  68. Ma, W.X. and R. Zhou, 2000. Liouville integrability of perturbation systems of finite-dimensional integrable Hamiltonian systems. Phys. Lett. A, 276: 73-78.
    CrossRef  |  Direct Link  |  
  69. Li, Y., W.X. Ma and J.E. Zhang, 2000. Darboux transformations of classical Boussinesq system and its new solutions. Phys. Lett. A, 275: 60-66.
    CrossRef  |  Direct Link  |  
  70. Li, Y. and W.X. Ma, 2000. Hamiltonian structures of binary higher-order constrained flows associated with two 3×3 spectral problems. Phys. Lett. A, 272: 245-256.
    CrossRef  |  Direct Link  |  
  71. Li, Y. and W.X. Ma, 2000. Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints. Chaos Solitons Fractals, 11: 697-710.
    CrossRef  |  Direct Link  |  
  72. Geng, X. and W.X. Ma, 2000. A multipotential generalization of the nonlinear diffusion equation. J. Phys. Soc. Japan, 69: 985-986.
    CrossRef  |  Direct Link  |  
  73. Zeng, Y.B. and W.X. Ma, 1999. Families of quasi-bi-Hamiltonian systems and separability. J. Math. Phys., 40: 4452-4473.
    CrossRef  |  Direct Link  |  
  74. Zeng, Y. and W.X. Ma, 1999. The construction of canonical separated variables for binary constrained AKNS flow. Phys. A: Stat. Mech. Applic., 274: 505-515.
    CrossRef  |  Direct Link  |  
  75. Zeng, Y. and W.X. Ma, 1999. Separation of variables for soliton equations via their binary constrained flows. J. Math. Phys., 40: 6526-6557.
    CrossRef  |  Direct Link  |  
  76. Weiguo, Z. and M. Wenxiu, 1999. Explicit solitary-wave solutions to generalized Pochhammer-Chree equations. Applied Math. Mech., 20: 666-674.
    CrossRef  |  Direct Link  |  
  77. Ma, W.X., X.B. Hu, S.M. Zhu and Y.T. Wu, 1999. Backlund transformation and its superposition principle of a Blaszak-Marciniak four-field lattice. J. Math. Phys., 40: 6071-6086.
    CrossRef  |  Direct Link  |  
  78. Ma, W.X., 1999. Comment on Generalized W∞ symmetry algebra of the conditionally integrable nonlinear evolution equation [J. Math. Phys. 36, 3492 (1995)]. J. Math. Phys., 40: 3685-3690.
    CrossRef  |  Direct Link  |  
  79. Ma, W.X. and R. Zhou, 1999. On inverse recursion operator and tri-Hamiltonian formulation for a Kaup-Newell system of DNLS equations. J. Phys. A: Math. Gen., 32: L239-L242.
    Direct Link  |  
  80. Ma, W.X. and R. Zhou, 1999. A coupled AKNS-Kaup-Newell soliton hierarchy. J. Math. Phys., 40: 4419-4428.
    CrossRef  |  Direct Link  |  
  81. Ma, W.X. and B. Fuchssteiner, 1999. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Math. Phys., 40: 2400-2418.
    CrossRef  |  Direct Link  |  
  82. Zhou, R. and W.X. Ma, 1998. New classical and quantum integrable systems related to the MKdV integrable hierarchy. J. Phys. Soc. Japan, 67: 4045-4050.
    CrossRef  |  Direct Link  |  
  83. Ma, W.X., 1998. Extension of hereditary symmetry operators. J. Phys. A: Math. Gen., 31: 7279-7289.
    Direct Link  |  
  84. Ma, W.X., 1998. A class of coupled KdV systems and their bi-Hamiltonian formulation. J. Phys. A: Math. Gen., 31: 7585-7591.
    Direct Link  |  
  85. Ma, W.X. and M. Pavlov, 1998. Extending Hamiltonian operators to get bi-Hamiltonian coupled KdV systems. Phys. Lett. A, 246: 511-522.
    CrossRef  |  Direct Link  |  
  86. Ma, W.X., R.K. Bullough, P.J. Caudrey and W.I. Fushchych, 1997. Time-dependent symmetries of variable-coefficient evolution equations and graded Lie algebras. J. Phys. A: Math. Gen., 30: 5141-5149.
    Direct Link  |  
  87. Ma, W.X., R.K. Bullough and P.J. Caudrey, 1997. Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations. J. Nonlinear Math. Phys., 4: 293-309.
    CrossRef  |  Direct Link  |  
  88. Ma, W.X., 1997. Binary nonlinearization for the Dirac systems. Chin. Ann. Math., 18: 79-88.
  89. Ma, W.X., 1997. A note on symmetries and generalized W∞ algebra of the modified KP equation. Lett. Math. Phys., 41: 237-241.
    CrossRef  |  Direct Link  |  
  90. Ma, W.X. and F.K. Guo, 1997. Lax representations and zero-curvature representations by the Kronecker product. Int. J. Theor. Phys., 36: 697-704.
    CrossRef  |  Direct Link  |  
  91. Ma, W.X. and D.T. Zhou, 1997. Explicit exact solutions to a generalized KdV equation. Acta Mathematica Scientia, 17: 168-174.
  92. Ma, W.M., 1997. Darboux transformations for a Lax integrable system in 2n dimensions. Lett. Math. Phys., 39: 33-49.
    CrossRef  |  Direct Link  |  
  93. Ma, W.X., Q. Ding, W.G. Zhang and B.Q. Lu, 1996. Binary non-linearization of Lax pairs of Kaup-Newell soliton hierarchy. Il Nuovo Cimento B, 111: 1135-1149.
    CrossRef  |  Direct Link  |  
  94. Ma, W.X., B. Fuchssteiner and W. Oevel, 1996. A three-by-three matrix spectral problem for AKNS hierarchy and its binary nonlinearization. Physica A, 233: 331-354.
  95. Ma, W.X. and Z.X. Zhou, 1996. Coupled integrable systems associated with a polynomial spectral problem and their Virasoro symmetry algebras. Prog. Theor. Phys., 96: 449-457.
    CrossRef  |  Direct Link  |  
  96. Ma, W.X. and K.S. Li, 1996. Virasoro symmetry algebra of Dirac soliton hierarchy. Inverse Problems, 12: L25-L31.
  97. Ma, W.X. and B. Fuchssteiner, 1996. The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy. Phys. Lett. A, 213: 49-55.
    CrossRef  |  Direct Link  |  
  98. Ma, W.X. and B. Fuchssteiner, 1996. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 7: 1227-1250.
    CrossRef  |  Direct Link  |  
  99. Ma, W.X. and B. Fuchssteiner, 1996. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Non-Linear Mech., 31: 329-338.
    CrossRef  |  Direct Link  |  
  100. Ma, W.X., 1995. Symmetry constraint of MKdV equations by binary nonlinearization. Phys. A: Stat. Mech. Applic., 219: 467-481.
    CrossRef  |  Direct Link  |  
  101. Ma, W.X., 1995. New finite-dimensional integrable systems by symmetry constraint of the KdV equations. J. Phys. Soc. Japan, 64: 1085-1091.
    CrossRef  |  Direct Link  |  
  102. Geng, X.G. and W.X. Ma, 1995. A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems. Il Nuovo Cimento A, 108: 477-486.
    CrossRef  |  Direct Link  |  
  103. Ma, W.X., 1994. Virasoro algebras of hierarchies of nonisospectral Lax operators. J. Syst. Sci. Math. Sci., 14: 309-316, (In Chinese).
  104. Ma, W.X., 1994. The Lie algebra structures of time-dependent symmetries of evolution equations. Acta Mathematicae Applicatae Sinica, 17: 388-392, (In Chinese).
  105. Ma, W.X., 1994. Lax representations of hierarchies of evolution equations with Lienard re-cursive structures. Acta Mathematica Scientia, 14: 409-418, (In Chinese).
  106. Ma, W.X., 1994. Exact solutions to the system through Painlevee analysis. J. Fudan Univ. (Nat. Sci.), 33: 319-326.
  107. Ma, W.X. and W. Strampp, 1994. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A, 185: 277-286.
    CrossRef  |  Direct Link  |  
  108. Ma, W.X., 1993. Travelling wave solutions to a seventh order generalized KdV equation. Phys. Lett. A, 180: 221-224.
    CrossRef  |  Direct Link  |  
  109. Ma, W.X., 1993. The unified structure of zero curvature representations of integrable hierarchies. Chin. Sci. Bull., 38: 2025-2031.
  110. Ma, W.X., 1993. The algebraic structure of zero curvature representations and application to coupled KdV systems. J. Phys. A: Math. Gen., 26: 2573-2582.
    Direct Link  |  
  111. Ma, W.X., 1993. On the complete integrability of nonlinearized Lax systems for the classical Boussinesq hierarchy. Acta Mathematicae Applicatae Sinica, 9: 92-96.
  112. Ma, W.X., 1993. Hereditary symmetries and integrable systems for a class of Hamiltonian operators. Applied Math. J. Chin. Univ., 8: 28-35, (In Chinese).
  113. Ma, W.X., 1993. An exact solution to two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A: Math. Gen., 26: L17-L20.
    Direct Link  |  
  114. Ma, W.X., 1993. A simple scheme for generating nonisospectral flows from the zero curvature representation. Phys. Lett. A, 179: 179-185.
    CrossRef  |  Direct Link  |  
  115. Ma, W.X., 1993. A hierarchy of coupled Burgers systems possessing a hereditary structure. J. Phys. A: Math. Gen., 26: L1169-L1174.
    Direct Link  |  
  116. Ma, W.X. and D.T. Zhou, 1993. Solitary wave solutions to a generalized KdV equation. Acta Physica Sinica, 42: 1731-1734, (In Chinese).
  117. Wen-Xiu, M., 1992. A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems. Applied Math. Mech., 13: 369-377.
    CrossRef  |  Direct Link  |  
  118. Ma, W.X., 1992. The product property of the generators of vector fields. Nat. J., 15: 391-392, (In Chinese).
  119. Ma, W.X., 1992. The algebraic structures of isospectral Lax operators and applications to integrable equations. J. Phys. A: Math. Gen., 25: 5329-5343.
    Direct Link  |  
  120. Ma, W.X., 1992. The algebraic structure related to LAB triad representations of integrable systems. Chin. Sci. Bull., 37: 1249-1253.
  121. Ma, W.X., 1992. Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations. J. Math. Phys., 33: 2464-2476.
    CrossRef  |  Direct Link  |  
  122. Ma, W.X., 1992. Lax operator algebras associated with Lax representations of integrable systems. Chin. Sci. Bull., 37: 1229-1231.
  123. Ma, W.X., 1992. An approach for constructing nonisospectral hierarchies of evolution equations. J. Phys. A: Math. Gen., 25: L719-L726.
    Direct Link  |  
  124. Ma, W.X., 1992. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemporary Math., 13: 79-89.
  125. Guizhang, T. and M. Wen-Xiu, 1992. An algebraic approach for extending Hamiltonian operators. J. Partial Diff. Equat., 3: 53-56.
  126. Ma, W.X., 1991. Generators of vector fields and time dependent symmetries of evolution equations. Sci. China Math., 34: 769-782.
  127. Ma, W.X., 1991. Commutational representations of yang hierarchy of integrable evolution-equations. Chin. Sci. Bull., 36: 1325-1330.
  128. Ma, W.X., 1991. A new approach for finding Lax representations of evolution equation hierarchies. J. Fudan Univ. (Nat. Sci.), 30: 304-311, (In Chinese).
  129. Ma, W.X., 1990. Some finite-dimensional involutive systems with polynomial forms. J. Math. Res. Exposition, 10: 509-515, (In Chinese).
  130. Ma, W.X., 1990. Some Hamiltonian operators in the infinite-dimensional Hamiltonian systems. Acta Mathematicae Applicatae Sinica, 13: 484-496, (In Chinese).
  131. Ma, W.X., 1990. Poisson manifolds and classical Hamiltonian operators. Northeastern Math. J., 6: 346-356.
  132. Ma, W.X., 1990. A new involutive system of polynomials and its classical integrable systems. Chin. Sci. Bull., 35: 1853-1858.
  133. Ma, W.X., 1990. K-symmetries and τ -symmetries of evolution equations and their Lie algebras. J. Phys. A: Math. Gen., 23: 2707-2716.
  134. Ma, W.X., 1989. A hierarchy of evolution equations with three Hamiltonian structures and its symmetries. J. Shanghai Jiao Tong Univ., 23: 9-18, (In Chinese).
  135. Ma, W.X., 1988. On the periodic functions without the least positive period. Math. Pract. Theory, 3: 45-51, (In Chinese).
  136. Ma, W.X., 1987. The generalized Hamiltonian structure of a hierarchy of nonlinear evolution equations. Kexue Tongbao, 32: 1003-1004.
  137. Ma, W.X., 1987. The equivalent conditions of several ū-nonlinear Hamiltonian operators. J. Shanghai Jiao Tong Univ., 21: 99-108, (In Chinese).
  138. Ma, W.X., 1986. On the two sorts of Hamiltonian operators. J. Graduate School Univ. Sci. Technol, China Acad. Sin., 3: 37-48, (In Chinese).