Dr. Ravishekar Kannan
My Social Links

Dr. Ravishekar Kannan

Principal Scientist
CFD Research Corporation, USA


Highest Degree
Ph.D. in Aerospace Engineering from Iowa State University, USA

Share this Profile

Area of Interest:

Physics
100%
Numerical Methods
62%
Fluid Dynamics
90%
Nuclear Physics
75%
Spectroscopy
55%

Research Publications in Numbers

Books
0
Chapters
1
Articles
21
Abstracts
0

Selected Publications

  1. Kannan, R.R., A.J. Przekwas, N. Singh, R. Delvadia, G. Tian and R. Walenga, 2016. Pharmaceutical aerosols deposition patterns from a dry powder inhaler: Euler lagrangian prediction and validation. Med. Eng. Phys., 10.1016/j.medengphy.2016.11.007.
    CrossRef  |  PubMed  |  Direct Link  |  
  2. Kannan, R., Z.J. Chen, N. Singh, A. Przekwas, R. Delvadia, G. Tian and R. Walenga, 2016. A quasi-3D wire approach to model pulmonary airflow in human airways. Int. J. Numer. Methods Biomed. Eng., 10.1002/cnm.2838.
    CrossRef  |  PubMed  |  Direct Link  |  
  3. Kannan, R., P. Guo and A. Przekwas, 2015. Particle transport in the human respiratory tract: Formulation of a nodal inverse distance weighted Eulerian-Lagrangian transport and implementation of the Wind-Kessel algorithm for an oral delivery. Int. J. Numer. Methods Biomed. Eng., Vol. 32. 10.1002/cnm.2746.
    CrossRef  |  Direct Link  |  
  4. Kannan, R., V. Harrand, X.G. Tan, H.Q. Yang and A.J. Przekwas, 2014. Highly scalable computational algorithms on emerging parallel machine multicore architectures II: Development and implementation in the CSD and FSI contexts. J. Parallel Distrib. Comput., 74: 2808-2817.
    CrossRef  |  Direct Link  |  
  5. Kannan, R., V. Harrand, M. Lee and A.J. Przekwas, 2013. Highly scalable computational algorithms on emerging parallel machine multicore architectures: Development and implementation in CFD context. Int. J. Numer. Methods Fluids, 73: 869-882.
    CrossRef  |  Direct Link  |  
  6. Kannan, R., 2013. An implicit LU-SGS spectral volume method for the moment models in device simulations III: Accuracy enhancement using the LDG2 flux formulation for non-uniform grids. Int. J. Numer. Modell. Electron. Networks Devices Fields, 26: 172-191.
    CrossRef  |  Direct Link  |  
  7. Kannan, R., 2012. A high order spectral volume formulation for solving equations containing higher spatial derivative terms II: Improving the third derivative spatial discretization using the LDG2 method. Commun. Comput. Phys., 12: 767-788.
    CrossRef  |  Direct Link  |  
  8. Kannan, R. and Z.J. Wang, 2012. A high order spectral volume solution to the Burgers' equation using the Hopf-Cole transformation. Int. J. Numer. Methods Fluids, 69: 781-801.
    CrossRef  |  Direct Link  |  
  9. Kannan, R. and Z. Wang, 2012. Improving the high order spectral volume formulation using a diffusion regulator. Commun. Comput. Phys., 12: 247-260.
    CrossRef  |  Direct Link  |  
  10. Kannan, R. and A. Przekwas, 2012. A near-infrared spectroscopy computational model for cerebral hemodynamics. Int. J. Numer. Methods Biomed. Eng., 28: 1093-1106.
    CrossRef  |  Direct Link  |  
  11. Kannan, R., 2011. High order spectral volume method for moment models in semiconductor device simulations: Formulation in 1D and application to a p-multigrid method. Int. J. Numer. Methods Biomed. Eng., 27: 1362-1375.
  12. Kannan, R., 2011. An implicit LU-SGS spectral volume method for moment models in device simulations II: Accuracy studies and performance enhancements using the penalty and BR2 formulations. Int. J. Numer. Methods Biomed. Eng., 27: 650-665.
    CrossRef  |  Direct Link  |  
  13. Kannan, R., 2011. A high order spectral volume method for elastohydrodynamic lubrication problems: Formulation and application of an implicit p-multigrid algorithm for line contact problems. Comput. Fluids, 48: 44-53.
    CrossRef  |  Direct Link  |  
  14. Kannan, R., 2011. A high order spectral volume formulation for solving equations containing higher spatial derivative terms: Formulation and analysis for third derivative spatial terms using the LDG discretization procedure. Commun. Comput. Phys., 10: 1257-1279.
    CrossRef  |  Direct Link  |  
  15. Kannan, R. and Z.J. Wang, 2011. LDG2: A variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput., 46: 314-328.
    CrossRef  |  Direct Link  |  
  16. Kannan, R. and Z.J. Wang, 2011. Curvature and entropy based wall boundary condition for the high order spectral volume Euler solver. Comput. Fluids, 44: 79-88.
    CrossRef  |  Direct Link  |  
  17. Kannan, R. and A. Przekwas, 2011. A computational model to detect and quantify a primary blast lung injury using near-infrared optical tomography. Int. J. Numer. Methods Biomed. Eng., 27: 13-28.
    CrossRef  |  Direct Link  |  
  18. Kannan, R. and Z.J. Wang, 2010. The direct discontinuous galerkin (DDG) viscous flux scheme for the high order spectral volume method. Comput. Fluids, 39: 2007-2021.
    CrossRef  |  Direct Link  |  
  19. Liang, C., R. Kannan and Z.J. Wang, 2009. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Comput. Fluids, 38: 254-265.
    CrossRef  |  Direct Link  |  
  20. Kannan, R. and Z.J. Wang, 2009. A study of viscous flux formulations for a p-multigrid spectral volume navier stokes solver. J. Sci. Comput., 41: 165-199.
    CrossRef  |  Direct Link  |  
  21. Kannan, R. and Z.J. Wang, 2009. A parallel overset adaptive cartesian/prism grid method for moving boundary flows. In: Computational Fluid Dynamics 2006. Deconinck, H. and E. Dick (Ed.). Springer, Berlin, Heidelberg, Germany., ISBN: 978-3-540-92778-5, pp: 323-328..
    CrossRef  |  Direct Link  |  
  22. Kannan, R. and Z.J. Wang, 2007. Overset adaptive cartesian/prism grid method for stationary and moving-boundary flow problems. AIAA J., 45: 1774-1779.
    CrossRef  |  Direct Link  |