Dr. Saad Abdel-Hamid El-Sayed Hamad
My Social Links

Dr. Saad Abdel-Hamid El-Sayed Hamad

Professor
Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, Egypt


Share this Profile

Area of Interest:

Physical Science Engineering
100%
Mechanical Behavior
62%
Mechanical Dynamics
90%
Mechatronics Systems
75%
Mass Spectrometry
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
77
Abstracts
2

Selected Publications

  1. EL-Sayed, S.A., 2022. Review of thermal decomposition, kinetics parameters and evolved gases during pyrolysis of energetic materials using different techniques. J. Anal. Applied Pyrolysis, Vol. 161. 10.1016/j.jaap.2021.105364.
    CrossRef  |  Direct Link  |  
  2. Mostafa, M.E., Y.M. Khedr, P. Ling, H. Chi and S. Hu et al., 2021. Experimental and numerical modelling of solid and hollow biomass pellets high-temperature rapid oxy-steam combustion: the effect of integrated CO2/H2O concentration. Fuel, Vol. 303. 10.1016/j.fuel.2021.121249.
    CrossRef  |  Direct Link  |  
  3. Mostafa, M.E., Y. Zhang, S. Hu, Y. Wang and S. Su et al., 2021. Mechanical characteristics and energy consumption of solid and hollow biomass pellet production using a statistical analysis of operating parameters. Waste Biomass Valorization, 12: 6635-6657.
    CrossRef  |  Direct Link  |  
  4. Mostafa, M.E., J. Xu, J. Zhou, H. Chi and S. Hu et al., 2021. Optimization and statistical analysis of the effect of main operation conditions on the physical characteristics of solid and hollow cylindrical pellets. Biomass Convers. Biorefin., Vol. 2021. 10.1007/s13399-021-01541-7.
    CrossRef  |  Direct Link  |  
  5. El-Sayed, S.A., 2021. Thermal explosion of a reactive gas mixture at constant pressure for non-uniform and uniform temperature systems. Defence Technol., Vol. 2021. 10.1016/j.dt.2021.06.009.
    CrossRef  |  Direct Link  |  
  6. EL-Sayed, S.A. and M.E. Mostafa, 2021. Kinetics, thermodynamics, and combustion characteristics of Poinciana pods using TG/DTG/DTA techniques. Biomass Convers. Biorefin., Vol. 2021. 10.1007/s13399-021-02021-8.
    CrossRef  |  Direct Link  |  
  7. Hanjian, L., C. Huanying, H. Song, H. Limo and X. Kai et al., 2020. Combustion behavior of large size coal over a wide range of heating rates in a concentrating photothermal reactor. Fuel Process. Technol., Vol. 197. 10.1016/j.fuproc.2019.106187.
    CrossRef  |  Direct Link  |  
  8. El-Sayed, S.A. and M.E. Mostafa, 2020. Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models. RSC Adv., 10: 18160-18179.
    CrossRef  |  Direct Link  |  
  9. EL-Sayed, S.A., 2020. Analytical and numerical solutions of sodium particle ignition based on the thermal explosion theory with different forms of reaction rates and variable thermal conductivity. Ann. Nucl. Energy, 10.1016/j.anucene.2020.107372.
    CrossRef  |  Direct Link  |  
  10. Mostafa, M.E., S. Hu, Y. Wang, S. Su, X. Hu, S.A. Elsayed and J. Xiang, 2019. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable Sustainable Energy Rev., 105: 332-348.
    CrossRef  |  Direct Link  |  
  11. Mostafa, M.E., L. He, J. Xu, S. Hu and Y. Wang et al., 2019. Investigating the effect of integrated CO2 and H2 O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM). Energy, 179: 343-357.
    CrossRef  |  Direct Link  |  
  12. Mostafa, M.E., H. Tang, J. Xu, H.Y. Chi and K. Xu et al., 2019. Experimental study of ignition and combustion characteristics of mixed rice straw and sewage sludge solid and hollow spherical pellets in a plasma combustion system. Key Eng. Mater., 797: 327-335.
    Direct Link  |  
  13. El‐Sayed, S.A., M.A. Ismail and M.E. Mostafa, 2019. Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environ. Prog. Sustainable Energy, 38: 1-14.
    CrossRef  |  Direct Link  |  
  14. El-Sayed, S.A. and E.H. Noseir, 2019. Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD  modeling. Appl. Thermal Eng., 10.1016/j.applthermaleng.2019.113767.
    CrossRef  |  Direct Link  |  
  15. El-Sayed, S.A. and E.H. Noseir, 2019. Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling. Applied Ther. Eng., Vol. 158. 10.1016/j.applthermaleng.2019.113767.
    CrossRef  |  Direct Link  |  
  16. El-Sayed, S., 2019. Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA. Eng. Agric., Environ. Food, 12: 460-469.
    CrossRef  |  Direct Link  |  
  17. El-Sayed, S.A., A.A. El-baz and E.H. Noseir, 2018. Sesame and broad bean stalks: mixing characteristics of chips as a biomass fuel for bubbling fluidized bed combustor. Int. J. Chem. Reactor Eng., 10.1515/ijcre-2017-0138.
    CrossRef  |  Direct Link  |  
  18. El-Sayed, S.A., A.A. El-baz and E.H. Noseir, 2018. Sesame and broad bean plant residue: Thermogravimetric investigation and devolatilization kinetics analysis during the decomposition in an inert atmosphere. J. Brazilian Soc. Mech. Sci. Eng., Vol. 40. 10.1007/s40430-018-1356-5.
    CrossRef  |  Direct Link  |  
  19. El-Sayed, S.A., A.A. El-Baz and E.H. Noseir, 2018. Sesame and broad bean stalks: Mixing characteristics of chips as a biomass fuel for bubbling fluidized bed combustor. Int. J. Chem. Reactor Eng., Vol. 16. 10.1515/ijcre-2017-0138.
    CrossRef  |  
  20. El-Sayed, S.A., 2018. Self-ignition of dust cloud in a hot gas. J. Braz. Soc. Mech. Sci. Eng., Vol. 40. 10.1007/s40430-018-1200-y.
    CrossRef  |  
  21. El-Sayed, S.A., 2018. Self-ignition of dust cloud in a hot gas. J. Braz. Soc. Mech. Sci. Eng., 10.1007/s40430-018-1200-y.
    CrossRef  |  Direct Link  |  
  22. El-Sayed, S.A. and M.K.E. Mohamed, 2018. Mechanical properties and characteristics of wheat straw and pellets. Energy Environ., 29: 1224-1246.
    CrossRef  |  Direct Link  |  
  23. El-Sayed, S.A. and M.E. Mostafa, 2018. Combustion and emission characteristics of egyptian sugarcane bagasse and cotton stalks powders in a bubbling fluidized bed combustor. Waste Biomass Valorization. 10.1007/s12649-018-0199-8.
    CrossRef  |  
  24. El-Sayed, S.A. and M. Khairy, 2018. Investigation of combustion and emissions of single wheat dust pellet in a fixed-bed combustor. Int. J. Heat Technol., 36: 525-542.
  25. El-Sayed, S.A. and M. Khairy, 2018. An experimental study of combustion and emissions of wheat straw pellets in high-temperature air flows. Combustion Sci. Technol., 190: 222-251.
    CrossRef  |  Direct Link  |  
  26. El-Sayed, S.A. and E.H. Noseir, 2018. Experimental investigation of combustion characteristics and emissions for a pilot-scale bubbling fluidized bed combustor fueled by biomass chips of sesame and broad bean stalks. Combust. Sci. Technol., 10.1080/00102202.2018.1555535.
    CrossRef  |  Direct Link  |  
  27. El-Sayed, S. and M. Khairy, 2018. Assessment of the combustion and emission behavior of crushed corn cob pellets in a Fixed bed combustor. J. Thermal Sci. Eng. Applic. 10.1115/1.4040964.
    CrossRef  |  
  28. El-Sayed S.A., 2018. Ignition of a pyrolysis wooden particle based on the thermal explosion theory. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 42: 317-327.
    CrossRef  |  Direct Link  |  
  29. Saad, E.S. and M. Khairy, 2017. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder. Iranica J. Energy Environ., 8: 71-87.
    CrossRef  |  Direct Link  |  
  30. El‐Sayed, S.A., T.M. Khass and M.E. Mostafa, 2017. Thermo‐physical and kinetics parameters determination and gases emissions of self‐ignition of sieved rice husk of different sizes on a hot plate. Asia‐Pacific J. Chem. Eng., 12: 536-550.
    CrossRef  |  Direct Link  |  
  31. El-Sayed, S.A. and M. Khairy, 2017. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder. Iranica J. Energy Environ., 8: 71-87.
  32. El-Sayed, S.A. and M.E.S. Mostafa, 2016. Estimation of thermal and kinetic parameters of sugarcane bagasse and cotton stalks dust layers from hot surface ignition tests. Combustion Sci. Technol., 188: 1655-1673.
    CrossRef  |  Direct Link  |  
  33. El-Sayed, S.A., 2015. Ignition characteristics for thermal runaways of hazard chemical reactions of different degree of reactions. Int. J. Energetic Mater., 1: 31-55.
  34. El-Sayed, S.A. and M.E. Mostafa, 2015. Thermal analysis and kinetic parameters determination of biomass pyrolysis using (TGA/DTG) and (DTA) at different heating rates. Waste Biomass Valorization J., 6: 401-415.
  35. El-Sayed, S.A. and M.E. Mostafa, 2015. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valorization, 6: 401-415.
    CrossRef  |  Direct Link  |  
  36. El-Sayed, S.A. and M. Khairy, 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 6: 157-170.
    CrossRef  |  Direct Link  |  
  37. El-Sayed, S.A. and M.E. Mostafa, 2014. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion Manage., 85: 165-172.
    CrossRef  |  Direct Link  |  
  38. El-Sayed, S.A. and M.E. Mostafa, 2014. Analysis of grain size statistic and particle size distribution of biomass powders. Waste Biomass Valorization, 5: 1005-1018.
    CrossRef  |  Direct Link  |  
  39. El-Sayed, S.A., 2013. Explosion characteristics of a volatile explosive. Open Thermodynamics J., 7: 88-102.
    CrossRef  |  Direct Link  |  
  40. El-Sayed, S.A. and T.M. Khass, 2013. Smoldering combustion of rice husk dusts on a hot surface. Combustion Explosion Shock Waves, 49: 159-166.
    CrossRef  |  Direct Link  |  
  41. El-Sayed, S.A., S.A. El-Sayed and M.M. Saadoun, 2012. Experimental study of heat transfer to flowing air inside a circular tube with longitudinal continuous and interrupted fins. J. Electr. Cooling Thermal Control, 2: 1-16.
    Direct Link  |  
  42. El-Sayed, S.A., 2010. Letter to editor. Process Safety Environ. Protect., 88: 446-448.
  43. El-Sayed, S.A., 2009. Ignition characteristics, conditions of criticality and disappearance of criticality of cumene hydroperoxide reaction by modeling approach. Process Safety Environ. Protect., 87: 293-299.
    CrossRef  |  Direct Link  |  
  44. El-Sayed, S.A., 2008. Critical and transition conditions for ignition of a carbon particles dust cloud in an adiabatic confined vessel. Combustion Sci. Technol., 180: 1572-1587.
    CrossRef  |  Direct Link  |  
  45. El-Sayed, S.A., 2006. Effect of degree of reaction on critical conditions and times to ignition of a gas mixture explosion. Combustion Sci. Technol., 178: 1055-1086.
    CrossRef  |  Direct Link  |  
  46. El-Sayed, S.A., S.M. Mohamed, A.A. Abdel-Latif and E.A. Abdel-Hamid, 2004. Experimental study of heat transfer and fluid flow in longitudinal rectangular-fin array located in different orientations in fluid flow. Exp. Thermal Fluid Sci., 29: 113-128.
    CrossRef  |  Direct Link  |  
  47. El-Sayed, S.A., 2004. Adiabatic thermal explosion of a solid-gas mixture. Combust. Sci. Tech., 176: 237-256.
  48. El-Sayed, S.A., 2003. Thermal explosion of autocatalytic reaction. J. Loss Prevention Process Ind., 16: 249-257.
    CrossRef  |  Direct Link  |  
  49. El-Sayed, S.A., 2003. The criteria of criticality and transition conditions of gas explosion. Combustion Sci. Technol., 175: 225-251.
    CrossRef  |  Direct Link  |  
  50. El-Sayed, S.A., 2003. Explosion characteristics of autocatalytic reaction. Combustion Flame, 133: 375-378.
    Direct Link  |  
  51. El-Sayed, S.A., 2003. Critical and transition conditions of gaseous explosion. J. Loss Prevention Process Ind., 16: 281-288.
    CrossRef  |  Direct Link  |  
  52. Hanafi, A.S., S.A. El-Sayed and M.E. Mostafa, 2002. Fluid flow and heat transfer around circular cylinder-flat and curved plates combinations. Exp. Thermal Fluid Sci., 25: 631-649.
    CrossRef  |  Direct Link  |  
  53. El-Sayed, S.A., S.M. Mohamed, A.M. Abdel-Latif and E.A. Abdel-Hamid, 2002. Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular-fin arrays of different geometries and shrouded fin array. Exp. Thermal Fluid Sci., 26: 879-900.
    CrossRef  |  Direct Link  |  
  54. Abou-Arab, T.W., S.A. El-Sayed, M.M. Shamloul and T.M. Khass, 2001. Study of combustion characteristics of coflowing gas and liquid fuel stream. Energy Fuels, 15: 1369-1382.
    CrossRef  |  Direct Link  |  
  55. El-Sayed, S.A. and A.M. Abdel-Latif, 2000. Smoldering combustion of dust layer on hot surface. J. Loss Prevention Process Ind., 13: 509-517.
    CrossRef  |  Direct Link  |  
  56. Shouman, A.R. and S.A. El-Sayed, 1999. Accounting for reactant consumption in the thermal explosion theory: IV-numerical solution of the Arrhenius problem. Combustion Flame, 117: 422-428.
  57. Shouman, A.R. and S.A. El-Sayed, 1998. Accounting for reactant consumption in the thermal explosion theory: III-Criticality conditions for the Arrhenius problem. Combustion Flame, 113: 212-223.
  58. Shouman, A.R. and S.A. El-Sayed, 1997. Accounting for reactant consumption in the thermal explosion problem part II: A direct solution with application to the Frank-Kamenetskii problem. Combustion Flame, 108: 361-386.
    CrossRef  |  Direct Link  |  
  59. Elkotb, M.M., S.A. El-Sayed, R.M. El-Taher and A.M.E. Abdel-Latif, 1997. Organic dust ignition in the high temperature flow behind a shock wave. Process Safety Environ. Protect., 75: 14-18.
    CrossRef  |  Direct Link  |  
  60. El-Sayed, S.A., S.A. El-Sayed, M.E. Abdel-Hamid and M.M. Sadoun, 1997. Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp. Thermal Fluid Sci., 15: 1-15.
    CrossRef  |  Direct Link  |  
  61. Elkotb, M.M., S.A. El-Sayed, R.M. El-Taher and A.M.E. Abdel-Latif, 1996. Experimental study of organic dust ignition behind shock waves. J. Loss Prevention Process Ind., 9: 249-253.
    Direct Link  |  
  62. El-Sayed, S.A., 1996. Thermal explosion of dispersed media: Critical conditions for discrete particles in an inert or a reactive matrix. J. Loss Prevention Process Ind., 9: 383-392.
    Direct Link  |  
  63. El-Sayed, S.A., 1996. Ignition characteristics of metal ignition in the thermal explosion theory. J. Loss Prev. Process Ind., 9: 393-400.
  64. El-Sayed, S.A., 1995. Ignition and transition conditions for inflammation and extinction for a first-order heterogeneous reaction. J. Loss Prevention Process Ind., 8: 237-243.
    Direct Link  |  
  65. El-Sayed, S.A., 1995. Effect of heating a semi-transparent medium by radiant energy on ignition characteristics in thermal explosion theory. J. Loss Prevention Process Ind., 8: 103-110.
  66. El-Sayed, S.A., 1994. Critical conditions in the uniform systems with variable heat transfer coefficient in the thermal explosion theory. Combustion Flame, 98: 231-240.
  67. Shouman, A.R. and S.A. El-Sayed, 1992. Accounting for reactant consumption in the thermal explosion theory: I-Mathematical foundation. Combustion Flame, 88: 321-344.