Dr. Thaddeus Chukwuemeka Ezeji
My Social Links

Dr. Thaddeus Chukwuemeka Ezeji

Professor
Department of Animal Sciences, The Ohio State University, Columbus, OH, United States


Highest Degree
Ph.D. in Microbiology from Rostock University, Germany

Share this Profile

Area of Interest:

Biological Sciences
100%
Bioremediation
62%
Microbiology
90%
Molecular Biology
75%
Biotechnology
55%

Research Publications in Numbers

Books
3
Chapters
17
Articles
93
Abstracts
0

Selected Publications

  1. Thunuguntla, R., H.K. Atiyeh, H. Zhang, T.C. Ezeji and R.S. Tanner, 2024. Biochar facilitated biological CO2 conversion to C2-C6 alcohols and fatty acids. Bioresour. Technol., Vol. 397. 10.1016/j.biortech.2024.130464.
    CrossRef  |  Direct Link  |  
  2. Rozina, O. Emmanuel and T.C. Ezeji, 2024. Exploring the synergy of nanomaterials and microbial cell factories during biohydrogen and biobutanol production from different carbon sources. Sustainable Chem. Environ., Vol. 6. 10.1016/j.scenv.2024.100098.
    CrossRef  |  Direct Link  |  
  3. Rozina, M. Ahmad, T.C. Ezeji, O. Emmanuel, N. Qureshi and A. Khan, 2024. Utilization of waste seed oil from Cestrum nocturnum as a novel source for cleaner production of biodiesel using green nano-catalyst of antimony oxide. Fuel, Vol. 364. 10.1016/j.fuel.2024.131124.
    CrossRef  |  Direct Link  |  
  4. Emmanuel, O., Rozina and T.C. Ezeji, 2024. Utilization of biomass-based resources for biofuel production: A mitigating approach towards zero emission. Sustainable Chem. One World, Vol. 2. 10.1016/j.scowo.2024.100007.
    CrossRef  |  Direct Link  |  
  5. Saba, B., A.K. Bharathidasan, T.C. Ezeji and K. Cornish, 2023. Characterization and potential valorization of industrial food processing wastes. Sci. Total Environ., Vol. 868. 10.1016/j.scitotenv.2023.161550.
    CrossRef  |  Direct Link  |  
  6. Rivera, E.C., D.C. AssumpÒÂo, H.J. Kwon, C.C. Okonkwo, T.C. Ezeji, R.M. Filho and A.P. Mariano, 2023. Mechanistic modeling of redox balance effects on the fermentation of eucalyptus wood-derived xylose to acetone-butanol-ethanol. Biochem. Eng. J., Vol. 190. 10.1016/j.bej.2022.108738.
    CrossRef  |  Direct Link  |  
  7. Okonkwo, C.C., A. Duduyemi, V.C. Ujor, H.K. Atiyeh, I. Iloba, N. Qureshi and T.C. Ezeji, 2023. From agricultural wastes to fermentation nutrients: A case study of 2,3-butanediol production. Fermentation, Vol. 9. 10.3390/fermentation9010036.
    CrossRef  |  Direct Link  |  
  8. Ezeji, T.C., H. Atiyeh, A.P. Mariano and S.K. Rakshit, 2023. Editorial: Innovative bioconversion of non-food substrates to fuels. Front. Bioeng. Biotechnol., Vol. 11. 10.3389/fbioe.2023.1163513.
    CrossRef  |  Direct Link  |  
  9. Olorunsogbon, T., Y. Adesanya, H.K. Atiyeh, C.C. Okonkwo, V.C. Ujor and T.C. Ezeji, 2022. Effects of Clostridium beijerinckii and medium modifications on acetone-butanol-ethanol production from switchgrass. Front. Bioeng. Biotechnol., Vol. 10. 10.3389/fbioe.2022.942701.
    CrossRef  |  Direct Link  |  
  10. Adesanya, Y., H.K. Atiyeh, T. Olorunsogbon, A. Khanal and C.C. Okonkwo et al., 2022. Viable strategies for enhancing acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysates. Bioresour. Technol., Vol. 344. 10.1016/j.biortech.2021.126167.
    CrossRef  |  Direct Link  |  
  11. Ujor, V.C., L.B. Lai, C.C. Okonkwo, V. Gopalan and T.C. Ezeji, 2021. Ribozyme-mediated downregulation uncovers DNA integrity scanning protein A (DisA) as a solventogenesis determinant in Clostridium beijerinckii. Front. Bioeng. Biotechnol., Vol. 9. 10.3389/fbioe.2021.669462.
    CrossRef  |  Direct Link  |  
  12. Qureshi, N., B.C. Saha, S. Liu, T.C. Ezeji and N.N. Nichols, 2021. Cellulosic butanol biorefinery: Production of biobutanol from high solid loadings of sweet sorghum bagasse-simultaneous saccharification, fermentation, and product recovery. Fermentation, Vol. 7. 10.3390/fermentation7040310.
    CrossRef  |  Direct Link  |  
  13. Okonkwo, C.C., V. Ujor and T.C. Ezeji, 2021. Production of 2,3-Butanediol from non-detoxified wheat straw hydrolysate: Impact of microbial inhibitors on Paenibacillus polymyxa DSM 365. Ind. Crops Prod., Vol. 159. 10.1016/j.indcrop.2020.113047.
    CrossRef  |  Direct Link  |  
  14. ChacÞn, S.J., G. Matias, T.C. Ezeji, R.M. Filho and A.P. Mariano, 2021. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates. Bioresour. Technol., Vol. 321. 10.1016/j.biortech.2020.124504.
    CrossRef  |  Direct Link  |  
  15. ChacÞn, S.J., G. Matias, C.F. dos Santos Vieira, T.C. Ezeji, R.M. Filho and A.P. Mariano, 2020. Enabling butanol production from crude sugarcane bagasse hemicellulose hydrolysate by batch-feeding it into molasses fermentation. Ind. Crops Prod., Vol. 155. 10.1016/j.indcrop.2020.112837.
    CrossRef  |  Direct Link  |