Dr. Naotaka  Furuichi
My Social Links

Dr. Naotaka Furuichi

Assistant Professor
Niigata University, Japan


Highest Degree
PostDoc. in Agriculture from Nagoya University, Japan

Share this Profile

Area of Interest:

Plant and Soil Sciences
100%
Hypersensitive Cell
62%
Plant Pathology
90%
Life Sciences
75%
Plant Stress
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Furuichi, N., M. Ohta, H. Okamura, T. Horigome and K. Yokokawa, 2015. The binding of Ca2+-dependent protein kinase to the suppressor of potato late blight pathogen proved by Fluorescence Correlation Spectroscopy (FCS) inhibits the NADPH oxidase and active oxygen generation in potato cell. J. Plant Pathol. Microbiol., Vol. S4. 10.4172/2157-7471.S4-001.
    CrossRef  |  
  2. Furuichi, N., 2015. Over the suppressor signaling of plant hypersensitive cell death, PCD and the single molecule signaling analysis in situ in plant cells. J. Plant Pathol. Microbiol., 6: e109-110.
  3. Furuichi, N. and K. Yokokawa, 2013. PiPE, a Phytophthora-associated novel elicitor from P. infestans, binds to a Ca2+-dependent protein kinase (CDPK) in potato for induction of plant hypersensitive reaction. J. Clin. Exp. Pathol., 14: 156-161.
  4. Furuichi, K.Y., H. Okamura and N.M. Ohtaσ, 2013. A novel elicitor (PIPE) from Phytophthora infestans induces active oxygen species and the hypersensitive response in potato. Global J. Med. Res., 13: 1-17.
  5. Iwase, Y., S. Honma, M. Matsuzaki, Y. Miyakawa and T. Kanno et al., 2010. A fully automated phosphopeptide purification system for large-scale phosphoproteome analysis. J. Biochem., 147: 689-696.
    CrossRef  |  
  6. Furuichi, N., K. Yokokawa and T. Ichihara, 2008. Ca2+-Dependent protein kinase in tomato is stimulated by host-selective toxin from Alternaria solani. Plant Stress, 2: 152-155.
  7. Furuichi, N. and K. Yokokawa, 2008. PiP elicitor and suppressor from Phytophthora infestans regulate Ca2+-Dependent Protein Kinase (CDPK) in the plasma membranes of potato. Japanese J. Plant Sci., 2: 35-38.
  8. Ohnishi, K., M. Ohshima and N. Furuichi, 2005. Evolution from possible primitive tRNA-Viroids to Early Poly-tRNA-Derived mRNAs. Genome Inform., 16: 94-103.
  9. Ohnishi, K. and N. Furuichi, 2004. Random-walk evolution of protein-sequence analyzed in ultidimentional pseudo-euclidean sample space spanned by principal coordinate axes. A study towords constracting multi-dimentional evorutionaly tree. Artificial Life Robotics, 9: 671-676.
  10. Ishimoto, Y., M. Ohshima, S. Hokari, N. Furuichi and K. Ohnishi, 2004. Early genesis and evolution of mRNA and 16S rRNA from poly-tRNA ribozymes. Artificial Life Robotics, 9: 677-681.
  11. Furuichi, N., T. Okuta, A. Hassan, K. Ohnishi and N. Hatsugai, 2004. Defence mechanisms of potato: Regulation of RiCDPK, the Ca2+-dependent protein kinase, by the elicitor and suppressor of Phytophthora infestans. Artificial Life Robotics, 9: 682-685.
  12. Ohnishi, K., H. Ohshima and N. Furuichi, 2003. Evolution from possible primitive tRNA-viroids to early poly-tRNA-derived mRNAs for synthe-sizing various house-keeping proteins. Artificial Life Robotics, 8: 123-128.
  13. Furuichi, N., K. Yokokawa, T. Sato, M. Oosawa, T. Tukihara and H. Tanaka, 2003. The Defence mechanisms of potato: Regulation of gp91phox, a NADPH oxidase of potato. Plant Microbe Interaction, 13: 27-28.
  14. Ohnishil, K., M. Ohshima, S. Hokari, N. Furuichi, H. Shutou and M. Goda, 2002. Origin of most primitive mRNAs and genetic codes via interactions between primitive tRNA ribozymes. Genome Inform., 13: 71-81.
    CrossRef  |  Direct Link  |  
  15. Ohnishi, K., H. Shutou, D. Kanbe, H. Sawamura, N. Furuichi, M. Ohshima and M. Goda, 2002. Neural network-biomachinogenesis via semeio-genesis: Unified theory on the origin of genetic codes and other semeiotic systems. Viva Origino, 30: 63-78.
  16. Furuichi. N., A. Hassan, K. Yokokawa, K. Saito, M. Kinjo and T. Okuta, 2002. RiCDPK a calcium dependent protein kinase of potato: it activates the HWC and suppressor of Phytophthora infestans signaling in hypersensitive response of potato. Plant Microbe Interaction JPN, 12: 34-35.
  17. Furuichi, N., K. Yokokawa and M. Kato, 2001. Defence reaction of potato: Gene expressinof NADPH oxidase homologue, Rboh and the regulation by 38kD elicitor from Phytophthora infestans. Plant Microbe Interaction, 11: 65-66.
  18. Hatsugai, N., T. Matsuura, R. Ikeda and N. Furuichi, 2000. Gene cloning of PiPE elicitor protein in Phytophthora infestans. Plant Microbe Interaction Jpn., 10: 128-130.
  19. Hassan, A., T. Okuta, M. Kato, Y. Sawahata, M. Matsubara and N. Furuichi, 2000. Ca2+-Dependent Protein Kinase (CDPK) from potato which can regulate the hypersensitive reaction of potato against fungal infection. Plant Microbe Interaction JPN, 10: 131-132.
  20. Hassan, A., T. Okuta, N. Hatsugai and N. Furuichi, 1999. Resistance mechanisms of potato to Phytophthora infestans: Recombinant protein preparation of different domains of Ca2+-dependent Protein Kinase (CPK) gene from potato and Arabidopsis. Plant Microbe Interaction Jpn., 9: 66-67.
  21. Furuichi, N., T. Okuda and M. Kato, 1999. The resistance mechanisms in potato to infection with Phytophthora infestans. Plant Microbe Interaction Japan, 9: 63-65.
  22. Miyagawa, H., A. Ishihara, C.H. Lim, T. Ueno and N. Furuichi, 1998. Coumaroyloctopamine in potato tuber disks by β-1, 3-glucooligosaccharide. J. Pesticide Sci., 23: 49-53.
    CrossRef  |  
  23. Furuichi, N., T. Okuta, A. Hassan, M. Kato and T. Kusakari, 1998. Gene expression of calcium-dependent protein kinase (CDPK) gene from Arabidopsis and potato. Plant Microbe Interaction Jpn., 8: 84-86.
  24. Furuichi, N., N. Hatsugai, T. Matsuura and T. Ikeda, 1998. The PiPE elicitor protein: Analysis of partial amino acid sequences. Plant Microbe Interaction Jpn., 8: 87-89.
  25. Furuichi, N., T. Kusakari, Y. Hirota, T. Okuda and M. Kato, 1997. Analysis of the suppressor receptor in potato plasmamembrane by using IAsys. MPMI Japan, 7: 11-13.
  26. Furuichi, N., M. Matsubara, Y. Suzuki, T. Kato and A.J. Anderson, 1997. The pathogenesis effector and the receptor sites in potato-Phytophthora infestans interaction. Physiol. Plant Pathol. Japan, 33: 121-133.
  27. Furuichi, N., M. Kato, N. Takamura, E. Terada and T. Kato, 1997. Defence Response in potato to infection with Phytophthora infestans: Isolation of NADPH oxidase from potato plasma membrane. Proc. Assoc. Plant Plot. Hokuriku, 45: 41-44.
  28. Furuichi, N., M. Kato, T. Okuta and M. Aoyagi, 1996. Analysis of the suppressor receptor protein of Phytophthora infestans by using a Biosensor. MPMI Soc. Japan, 6: 95-97.
  29. Furuichi, N., S. Nishimura and G. Langsdorf, 1992. Effect of alternaric acid, a toxin of Alternaria solani, on the hypersensitive response of potato to Phytophthora infestans. Japanese J. Phytopathol., 58: 1-7.
    CrossRef  |  
  30. Langsdorf, G., N. Furuichi, N. Doke and S. Nishimura, 1990. Investigations on Alternaria solani infections: Detection of alternaric acid and a susceptibility‐inducing factor in the spore‐germination fluid of A. solani. J. Phytopathol., 128: 271-282.
    CrossRef  |  Direct Link  |  
  31. Furuichi, N. and J. Suzuki, 1990. Purification and properties of suppressor glucan isolated from Phytophthora infestans. Japanese J. Phytopathol., 56: 457-467.
    CrossRef  |  Direct Link  |  
  32. Furuichi, N. and J. Suzuki, 1990. Host parasite interaction in potato late blight disease. Cell Sci., 6: 435-442.
  33. Furuci, N. and J. Suzuki, 1989. Isolation of proteins related to the β-Lectin from Potato which bind to hyphal wall components of Phytophthora infestans. J. Phytopathol., 127: 281-290.
    Direct Link  |  
  34. Furuichi, N., 1988. Infection with Phytophthora infestans, potato late blight pathogen, in potato. Plant Defence, 42: 23-26.
  35. Furuichi, N. and J. Suzuki, 1988. Use of enzyme-linked Immunosolbent assay for characterization of water soluble glucans, the suppressor of hypersensitive response of potato cells caused by Phytophthora infestans. Ann. Phytopathol. Soc. Jpn., 54: 45-51.
  36. Yu, H.S., S. Nishimura and N. Furuichi, 1983. Production of zinniol by Alternaria porri and it's phytotoxicity. Ann. Phytopathol. Soc. Jpn., 49: 746-748.
    CrossRef  |  
  37. Furuichi, N., K. Tomiyama and N. Doke, 1982. Effect of water soluble Glucan of Phytophthora Infestans on the agglutination of germinated cystospores caused by potato lectin. Ann. Phytopathol. Soc. Jpn., 48: 234-237.
    CrossRef  |  
  38. Doke, N. and N. Furuichi, 1982. Response of protoplasts to hyphal wall components in relationship to resistance of potato to Phytophthora infestans. Physiol. Plant Pathol., 21: 23-30.
    CrossRef  |  Direct Link  |  
  39. Furuichi, N. and N. Doke, 1981. Infection process of Phytophthora infestans in potato. Potato Sci., 1: 17-26.
  40. Furuichi, N., K. Tomiyama and N. Doke, 1980. The role of potato lectin in the binding of germ tubes of Phytophthora infestans to potato cell membrane. Physiol. Plant Pathol., 16: 249-256.
    CrossRef  |  Direct Link  |  
  41. Furuichi, N., K. Tomiyama and N. Doke, 1980. Induction of hypersensitive reactivity of juvenile potato cell to compatible race of Phytophthora infestans by its Infection perse. Ann. Phytopathol. Soc. Jpn., 46: 247-249.
    CrossRef  |  
  42. Furuichi, N., K. Tomiyama, D.O.K.E. Noriyuki and M. Nozue, 1979. Inhibition of further development of hypersensitive reactivity to Phytophthora infestans by blasticidin S in cut tissues of potato tuber at various stages of aging process. Japanese J. Phytopathol., 45: 215-220.
  43. Furuichi, N., K. Tomiyama and N. Doke, 1979. Hypersensitive reactivity in potato: transition from inactive to active state induced by infection with an incompatible race of Phytophthora infestans. Phytopathology, 69: 734-736.