Dr. Huong Le  Thi Thu
My Social Links

Dr. Huong Le Thi Thu

Researcher
Vietnam National University, Vietnam


Highest Degree
Ph.D. in Pharmaceutical Sciences from University Marta Abreu of Las Villas, Cuba

Share this Profile

Area of Interest:

Pharmacology and Toxicology
100%
Herbal Drug Delivery
62%
Clinical Biochemistry
90%
Molecular Diversity
75%
Tropical Medicine
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. The, H.P., G. Casanola-Martin, K. Dieguez-Santana, N. Nguyen-Hai and N.T. Ngoc, 2017. Quantitative structure–activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. SAR QSAR Environ. Res., 28: 199-220.
    CrossRef  |  
  2. Marrero-Ponce, Y., Y.G. CastaÜeda, R. Vivas-Reyes, F.M. Vergara and V.J. ArÌn, 2017. Dry selection and wet evaluation for the rational discovery of new anthelmintics. Mol. Phy., 115: 2300-2313.
    CrossRef  |  
  3. Huong, T.T.L., L.V. Cuong, P.T. Huong, T.P. Thao and L.T.T. Huong, 2017. Exploration of some indole- based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Chem. Pap- Slovak Acad. Sci., 71: 1759-1769.
    CrossRef  |  
  4. Huong, T.T.L., D.T.M. Dung, N.V. Huan, L.V. Cuong and P.T. Hai, 2017. Novel N-hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorg. Chem., 71: 160-169.
    CrossRef  |  
  5. Dieguez-Santana, K., H. Pham-The, O.M. Rivera-Borroto, A. Puris, H. Le-Thi-Thu and G.M. CasaÜola-Martin, 2017. A two QSAR way for antidiabetic agents targeting using α-amylase and α-glucosidase Inhibitors: Model parameters settings in artificial intelligence techniques. Lett. Drug Des. Discovery, 14: 862-868.
    CrossRef  |  
  6. Castillo-Garit, J.A., G.M. CasaÜola-Martin, H. Le-Thi-Thu, H. Pham-The and S. Jones-Barigye, 2017. A simple method to predict blood-brain barrier permeability of drug- like compounds using Med. Chem., 13: 664-669.
    CrossRef  |  
  7. Santana, K.D., H. Pham-The, P.J. Villegas, H.L.T. Thu, J.A.C. Garit and G.M. CasaÜola Martin, 2016. Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database. Chemosphere, 165: 434-441.
    CrossRef  |  
  8. MartØnez-Santiago, O., Y. Marrero-Ponce, S.J. Barigye, H.L.T. Thu and F.J. Torres et al., 2016. Physico-chemical and structural interpretation of discrete derivative indices on n-tuples atoms. Int. J. Mol. Sci., 17: 812-825.
    CrossRef  |  
  9. MartØnez-Santiago, O., R.M. Cabrera, Y. Marrero-Ponce, S. J. Barigye and H. Le-Thi-Thu et al., 2016. Generalized molecular descriptors derived from event-based discrete derivative. Curr. Pharm. Design, 22: 5095-5113.
    CrossRef  |  
  10. Tung, B.T., E. Rodriguez-Bies, H.N. Thanh, H. Le-Thi-Thu, P. Navas, V.M. Sanchez and G. Lopez-Lluch, 2015. Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. Aging Clin. Exp. Res., 27: 775-783.
    CrossRef  |  Direct Link  |  
  11. Thu, H.L.T., Y. Canizares-Carmenate, Y. Marrero-Ponce, F. Torrens and J.A. Castillo-Garit, 2015. Prediction of Caco-2 cell permeability using bilinear indices and multiple linear regression. Lett. Drug Design Discov., 12: 161-169.
    CrossRef  |  
  12. Thanh, T.B., H.N. Thanh, H.P.T. Minh, H. Le-Thi-Thu, H.D.T. Ly and L.V. Duc, 2015. Protective effect of Tetracera scandens L. leaf extract against CCl4-induced acute liver injury in rats. Asian Pac. J. Trop. Biomed., 5: 221-227.
    CrossRef  |  Direct Link  |  
  13. Thanh, T.B., H.N. Thanh, H.D.T. Ly, H. Le-Thi-Thu, L.V. Duc and T.N. Huu, 2015. Flavonoids from leaves of Tetracera scandens L. J. Chem. Pharma. Res., 7: 2123-2126.
    Direct Link  |  
  14. Pham-The, H., G. CasaÜola-Martin, T. Garrigues, M. Bermejo and I. GonzÌlez-ìlvarez, et al., 2015. Exploring different strategies for imbalanced ADME data problem: Case study on Caco-2 permeability modeling. Mol. Diversity, 20: 93-109.
    CrossRef  |  
  15. Marrero-Ponce, Y., C.R. Garcia-Jacas, S.J. Barigye, J.R. Valdes-Martini and O.M. Rivera-Borroto et al., 2015. Optimum search strategies or novel 3D molecular descriptors: Is there a Stalemate?. Curr. Bioinf., 10: 533-564.
    CrossRef  |  
  16. H.L.T. Thu, I.B. Cruz, Y. Marrero-Ponce, N. Nguyen-Hai and H. Pham-The et al., 2015. The best choice for the modeling of chemicals against hyper-pigmentation?. Curr. Bioinf., 10: 520-532.
    CrossRef  |  
  17. G.M. CasaÜola-Martin, H. Le-Thi-Thu, F. Perez-Gimenez, Y. Marrero-Ponce, M. Merino-SanjuÌn, C. Abad and H. GonzÌlez-DØaz, 2015. Multi-output model with Box–Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin–proteasome pathway. Mol. Diversity, 19: 347-356.
    CrossRef  |  
  18. Dung, D.T.M., P.T.P. Dung, D.T.K. Oanh, H. Pham-The and H. Le-Thi-Thu et al., 2015. Novel 3- substituted-2-oxoindoline-based N-hydroxypropenamides as histone deacetylase inhibitors and ntitumor Agents. Med. Chem., 11: 725-735.
    CrossRef  |  
  19. Dung D.T., P.T. Dung, D.T. Oanh, P.T. Hai and L.T. Huong et al., 2015. Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as histone deacetylase inhibitors and antitumor agents. Med. Chem., 11: 725-735.
    CrossRef  |  
  20. CasaÜola-Martin, G.M., H. Le-Thi-Thu, F. Perez-Gimenez, Y.M. Ponce, M.M. SanjuÌn, C. Abad and H.G. DØaz, 2015. Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin- proteasome pathway (UPP) proteins. Curr. Protein Pept Sci., 17: 220-227.
    CrossRef  |  
  21. Brito-SÌnchez, Y., Y. Marrero-Ponce, S.J. Barigye, C.M. Perez, H. Le-Thi-Thu and A. Cherkasov, 2015. Towards better bbb passage prediction using an extensive and curated data set. Mol. Inf., 34: 308-330.
    CrossRef  |  
  22. H. Le-Thi-Thu, G.M Casanola-MartØn, Y. Marrero-Ponce, A. Rescigno, C. Abad and M.T.H. Khan, 2014. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors. Curr. Topics Med. Chem., 14: 1473-1485.
    CrossRef  |  
  23. Casanola-Martin, G.M., H. Le-Thi-Thu, Y. Marrero-Ponce, J.A. Castillo-Garit, F. Torrens, F. Perez-Gimenez and C. Abad, 2014. Analysis of proteasome inhibition prediction using atom-based quadratic indices enhanced by machine learning classification techniques. Lett Drug Design Discovery, 11: 705-711.
    CrossRef  |  
  24. Casanola-Martin, G.M., H. Le-Thi-Thu, Y. Marrero-Ponce, J.A. Castillo-Garit and F. Torrens et al., 2014. Tyrosinase enzyme: 1. An overview on a pharmacological target. Curr. Topics Med. Chem., 14: 1494-1501.
    CrossRef  |  
  25. Pham-The, H., I. Gonzalez-Alvarez, M. Bermejo, T. Garrigues, H. Le-Thi-Thu and M.A. Cabrera-Perez, 2013. The use of rule-based and QSPR approaches in ADME profiling: A case study on Caco-2 permeability. Mol. Inform., 32: 459-479.
    CrossRef  |  Direct Link  |  
  26. Brito-Sanchez, Y., J.A. Castillo-Garit, H. Le-Thi-Thu, Y. Gonzalez-Madariaga, F. Torrens, Y. Marrero-Ponce and J.E. Rodriguez-Borges, 2013. Comparative study to predict toxic modes of action of phenols from molecular structures. SAR QSAR Environ. Res., 24: 235-251.
    CrossRef  |  PubMed  |  Direct Link  |  
  27. Tugores, Y.M., A.M. Marcel, Y.M. Ponce, V.J. Aran and J.A.E. GarcØa­Trevijano et al., 2012. Descubrimiento de nuevos antimalÌricos a partir de fÌrmacos conocidos mediante cribado in silico e in vitro. An. de la Real Academia Nacional de Farmacia, 78: 401-416.
  28. Tugores, M.Y., A.M. Marcel, M.Y. Ponce, V.J. Aran and J.A.E. Garcia-Trevijano et al., 2012. Discovery of new antimalarials from commercial drugs by in silico and in vitro screening. Real Acad. Nac. Farm., 78: 401-416.
    Direct Link  |  
  29. CasaÜola-MartØn, G.M., M.T.H. Khan, H. Le-Thi-Thu, Y. Marrero-Ponce, R. GarcØa-Domenech, F. Torrens and A. Rescigno, 2012. Retrained classification of tyrosinase inhibitors and “In Silico” potency estimation by using atom-type linear Indices: A powerful tool for speed up the discovery of leads. Int. J. Chemoinf. Chem. Eng., Vol. 2. 10.4018/ijcce.2012070104.
    CrossRef  |  
  30. Le-Thi-Thu, H., Y. Marrero-Ponce, G.M. Casaòola-Martin, G.C. Cardoso and M.d.C.Chavez et al., 2011. A comparative study of nonlinear machine learning for the “In silico” depiction of tyrosinase inhibitory activity from molecular structure. Mol. Inf., 30: 527-537.
    CrossRef  |  
  31. Le-Thi-Thu, H., G.M CasaÜola-MartØn, Y. Marrero-Ponce, A. Rescigno and L. Saso et al., 2011. Novel coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database. Mol. Diversity, 15: 507-520.
    CrossRef  |  
  32. Le-Thi-Thu, H., G.C. Cardoso, G.M. Casanola-Martin, Y. Marrero-Ponce and A. Puris et al., 2010. QSAR models for tyrosinase inhibitory activity description applying modern statistical classification techniques: A comparative study. Chemom. Intell. Lab. Syst., 104: 249-259.
    CrossRef  |  Direct Link  |