Dr. Win-Jin  Chang
My Social Links

Dr. Win-Jin Chang

Professor
Kun-Shan University, Taiwan


Highest Degree
Ph.D. in Mechanical Engineering from National Cheng Kung University, Tainan, Taiwan

Share this Profile

Biography

Dr. Win-Jin Chang is currently working as Professor at Department of Mechanical Engineering, Kun-Shan University, Taiwan. He has completed his Ph.D. in Mechanical Engineering from National Cheng Kung University, Tainan, Taiwan. His main area of interest focuses on Physical Science Engineering. His area of expertise includes Nanomechanics, Heat and Mass Transfer, Molecular Dynamic Simulation, Inverse Engineering, Atomic Force Microscopy, and Mathematical Modeling of Physical Problems. He has published 139 research articles in journals, and 5 book chapters contributed as author/co-author.

Area of Interest:

Physical Science Engineering
100%
Nanomechanics
62%
Molecular Dynamic Simulation
90%
Atomic Force Microscopy
75%
Heat and Mass Transfer
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Wu, T.S., H.L. Lee, W.J. Chang and Y.C. Yang, 2015. An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model. Int. Commun. Heat Mass Transfer, 60: 1-8.
    CrossRef  |  Direct Link  |  
  2. Lee, H.L., Y.C. Yang, and W.J. Chang, 2015. Vibration frequency and sensitivity of an atomic force microscope cantilever with a crack. J. Comput. Theor. Nanosci., 12: 4329-4334.
  3. Lee, H.L., W.L. Chen, W.J. Chang and Y.C. Yang, 2015. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction. Comput. Methods Biomech. Biomed. Eng., 18: 1525-1534.
    CrossRef  |  PubMed  |  Direct Link  |  
  4. Fang, T.H., W.J. Chang and Y.L. Feng, 2015. Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations. Appl. Surf. Sci., 356: 221-225.
    CrossRef  |  Direct Link  |  
  5. Chang, W.J., Y.C. Yang and H.L. Lee, 2015. Nanomachining analysis of a multi-cracked atomic force microscope cantilever based on a modified couple stress theory. Mod. Phys. Lett. B, Vol. 29. 10.1142/S0217984915501869.
    CrossRef  |  Direct Link  |  
  6. Lee, H.L., Y.C. Yang and W.J. Chang, 2014. Sensitivity of an atomic force microscope cantilever with a crack. Microsc. Microanal., 20: 1940-1941.
    CrossRef  |  Direct Link  |  
  7. Lee, H.L., W.L. Chen, W.J. Chang and Y.C. Yang, 2014. Estimation of energy absorption rate and temperature distributions in short-pulse laser heating of metals with a dual-phase-lag model. Appl. Therm. Eng., 65: 352-360.
    CrossRef  |  Direct Link  |  
  8. Lee, H.L. and W.J. Chang, 2014. Vibration analysis of a grapheme-substrate structure. Jpn. J. Appl. Phys., Vol. 53. .
    Direct Link  |  
  9. Fang, T.H., W.J. Chang, K.P. Lin and S.T. Shen, 2014. Stability and wrinkling of defective graphene sheets under shear deformation. Curr. Appl. Phys., 14: 533-537.
    CrossRef  |  Direct Link  |  
  10. Fang, T.H., W.J. Chang, K.P. Lin and C.I. Weng, 2014. Molecular dynamics analysis for fracture behavior of graphene sheets with v-shaped notches under tension. Nano, Vol. 9. 10.1142/S1793292014500878.
    CrossRef  |  Direct Link  |  
  11. Fang, T.H., W.J. Chang and J.C. Yang, 2014. Molecular dynamics study on mechanical properties of graphene sheets with a hole. Digest J. Nanomater. Biostruct., 9: 1207-1214.
    Direct Link  |  
  12. Chang, W.J. and H.L. Lee, 2014. Mass detection using a double-layer circular grapheme-based nanomechanical resonator. J. Appl. Phys., Vol. 116. 10.1063/1.4890220.
    CrossRef  |  Direct Link  |  
  13. Chang, W.J. and H.L. Lee, 2014. Free asymmetric transverse vibration of circular monolayer graphene. Nano, Vol. 9. 10.1142/S1793292014500726.
    CrossRef  |  Direct Link  |  
  14. Yang, Y.C., W.J. Chang and H.L. Lee, 2013. Vibration behavior of nanoparticle delivery in a single-walled carbon nanotube using nonlocal timoshenko beam theory. J. Comput. Theor. Nanosci., 10: 1472-1476.
    CrossRef  |  Direct Link  |  
  15. Lee, H.L., Y.C. Yang and W.J. Chang, 2013. Mass detection using a graphene-based nanomechanical resonator. Jpn. J. Applied Phys., Vol. 52. 10.7567/JJAP.52.025101.
    CrossRef  |  
  16. Lee, H.L., W.L. Chen, W.J. Chang, E.J. Wei and Y.C. Yang, 2013. Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Applied Thermal Eng., 52: 275-283.
    CrossRef  |  
  17. Lee, H.L., W.J. Chang, S.C. Wu and Y.C. Yang, 2013. An inverse problem in estimating the base heat flux of an annular fin based on the hyperbolic model of heat conduction. Int. Commun. Heat Mass Transfer, 44: 31-37.
    CrossRef  |  Direct Link  |  
  18. Lee, H.L., J.C. Hsu, S.Y. Lin and W.J. Chang, 2013. Sensitivity analysis of single-layer graphene resonators using atomic finite element method. J. Appl. Phys., Vol. 114. 10.1063/1.4823735.
    CrossRef  |  Direct Link  |  
  19. Lee, H.L. and W.J. Chang, 2013. Thermally induced asymmetric buckling of circular monolayer graphene. J. Nanomater., Vol. 2013. 10.1155/2013/416189.
    CrossRef  |  Direct Link  |  
  20. Fang, S.C., Y.Y. Tsai and W. Chang, 2013. The influence of thickness, diameter, chiral and bond angle on the value of young's modulus for chiral single-walled carbon nanotubes. Digest J. Nanomater. Biostruct., 8: 1365-1376.
    Direct Link  |  
  21. Chu, S.S., S.J. Wu and W.J. Chang, 2013. Vibration analysis of a carbon nanotube-based resonator using finite element method. J. Comput. Theor. Nanosci., 10: 119-122.
    CrossRef  |  
  22. Chang, W.J., Y.C. Yang and H.L. Lee, 2013. Dynamic behaviour of atomic force microscope-based nanomachining based on a modified couple stress theory. Micro Nano Lett., 8: 832-835.
    CrossRef  |  Direct Link  |  
  23. Chang, W. and H.L. Lee, 2013. Free vibration of an embedded conical nanotube with surface effect. Digest J. Nanomater. Biostruct., 8: 1325-1333.
    Direct Link  |  
  24. Lee, H.L., W.J. Chang, W.L. Chen and Y.C. Yang, 2012. Non-fourier thermoelastic analysis of an annular fin with variable convection heat transfer coefficient. Internal J. Thermophys., 33: 1068-1081.
    CrossRef  |  
  25. Lee, H.L., W.J. Chang, W.L. Chen and Y.C. Yang, 2012. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Convers. Manage., 57: 1-7.
    CrossRef  |  
  26. Lee, H.L., W.J. Chang, S.H. Sun and Y.C. Yang, 2012. Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes. Compos. Part B: Eng., 43: 786-792.
    CrossRef  |  
  27. Lee, H.L., S.H. Sun, W.J. Chang and Y.C. Yang, 2012. Transient thermal loading induced optical effects in tightly jacketed double-coated optical fibers with interlayer thermal contact resistance. Opt. Commun., 284: 447-452.
    CrossRef  |  
  28. Lee, H.L., R.P. Chang and W.J. Chang, 2012. Mechanical Analysis of Carbon Nanotubes and their Applications. In: Nanomaterials and Nanostructures, Govil, J.N. (Ed.). Chapter 2. Studium Press LLC, USA., ISBN: 1-62699-004-2, pp: 27-45.
  29. Lee, H.L. and W.J. Chang, 2012. Sensitivity analysis of a cracked atomic force microscope cantilever. Jpn. J. Applied Phys., Vol. 51. 10.1143/JJAP.51.035202.
    CrossRef  |  
  30. Lee, H.L. and W.J. Chang, 2012. Frequency analysis of carbon-nanotube-based mass sensor using non-local Timoshenko beam theory. IET Micro Nano Lett., 7: 86-89.
    CrossRef  |  
  31. Lee, H.L. and W.J. Chang, 2012. Dynamic response of a cracked atomic force microscope cantilever used for nanomachining. Nanoscale Res. Lett., Vol. 7. 10.1186/1556-276X-7-131.
    CrossRef  |  
  32. Fang, T.H., W.J. Chang and J.C. Yang, 2012. Temperature effect on mechanical properties of graphene sheets under tensile loading. Digest J. Nanomater. Biostruct., 7: 1811-1816.
    Direct Link  |  
  33. Chang, W.J. and H.L. Lee, 2012. Vibration analysis of viscoelastic carbon nanotubes. IET Micro Nano Lett., 7: 1308-1312.
    CrossRef  |  
  34. Lee, H.L. and W.J. Chang, 2011. Surface effects on axial buckling of nonuniform nanowires using non-local elasticity theory. IET Micro Nano Lett., 6: 19-21.
    CrossRef  |  
  35. Lee, H.L. and W.J. Chang, 2011. Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelectron. Eng., 88: 3214-3218.
    CrossRef  |  
  36. Lee, H.L. and W.J. Chang, 2011. Dynamic modelling of a single-walled carbon nanotube for nanoparticle delivery. Proc. R. Soc. A, 467: 860-868.
    CrossRef  |  
  37. Lee, H.L. and W.J. Chang, 2011. Dynamic behavior of nanoparticle delivery in double-walled carbon nanotube. J. Comput. Theor. Nanosci., 8: 2376-2380.
    CrossRef  |  
  38. Hsu, J.C., H.L. Lee and W.J. Chang, 2011. Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr. Applied Phys., 11: 1384-1388.
    CrossRef  |  
  39. Fang, T.H., W.J. Chang, Y.C. Fan and C.I. Weng, 2011. Nanoindentation response of self-assembled monolayers on gold with conical carbon indenters. J. Comput. Theor. Nanosci., 8: 2389-2393.
    CrossRef  |  
  40. Fang, T.H., W.J. Chang, S.S. Chi and J.H. Liou, 2011. Physical mechanism of nitrogen implantation into silicon using molecular dynamics simulation. J. Comput. Theor. Nanosci., 8: 1101-1105.
    CrossRef  |  
  41. Fang, T.H., W.J. Chang and Y.C. Fan, 2011. Contact nanomechanics of a capped nanotube indented on graphite and diamond surfaces. IET Micro Nano Lett., 6: 214-216.
    CrossRef  |  
  42. Fang, T.H., S.H. Kang, C.D. Wu and W.J. Chang, 2011. Surface and nanomechanical behavior of human molars soaked in sodium fluoride. J. Adv. Microsc. Res., 6: 7-13.
    CrossRef  |  
  43. Chang, W.J., H.L. Lee and Y.C. Yang, 2011. Estimation of heat flux and thermal stresses in functionally graded hollow circular cylinders. J. Thermal Stresses, 34: 740-755.
    CrossRef  |  
  44. Yang, Y., S. Chu, W. Chang and T. Wu, 2010. Estimation of heat flux and temperature distributions in a composite strip and homogeneous foundation. Int. Commun. Heat Mass Transfer, 37: 495-500.
    CrossRef  |  
  45. Lee, H.L., Y.C. Yang and W.J. Chang, 2010. Laser-induced thermal effect on sensitivity of scanning near-field microscope probe. Japanese J. Applied Phys., Vol. 49, 10.1143/JJAP.49.125201.
    CrossRef  |  
  46. Lee, H.L., S.S. Chu and W.J. Chang, 2010. Vibration analysis of scanning thermal microscope probe nanomachining using timoshenko beam theory. Curr. Applied Phys., 10: 570-573.
    CrossRef  |  Direct Link  |  
  47. Lee, H.L., J.C. Hsu and W.J. Chang, 2010. Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett., 5: 1774-1778.
    PubMed  |  
  48. Lee, H.L. and W.J. Chang, 2010. Surface effects on frequency analysis of nanotubes using nonlocal timoshenko beam theory. Virtual J. Nanoscale Sci. Technol., Vol. 22, No. 20. .
    Direct Link  |  
  49. Lee, H.L. and W.J. Chang, 2010. Surface effects on frequency analysis of nanotubes using nonlocal timoshenko beam theory. J. Applied Phys., Vol. 108, 10.1063/1.3503853.
    CrossRef  |  Direct Link  |  
  50. Lee, H.L. and W.J. Chang, 2010. Surface and small-scale effects on vibration analysis of a nonuniform nanocantilever beam. Phys. E: Low-Dimens. Syst. Nanostruct., 43: 466-469.
    CrossRef  |  
  51. Fang, T.H., W.J. Chang, W. Water and C.C. Lee, 2010. Effect of gas concentration on structural and optical characteristics of ZnO Nanorods. Phys. E: Low-Dimensi. Syst. Nanostruct., 42: 2139-2142.
    Direct Link  |  
  52. Fang, T.H., W.J. Chang, H.L. Lee and S.J. Wu, 2010. Mechanical behaviors of nanoimprinted Cu-Ni alloys using molecular dynamics simulation. Adv. Mat. Res., 89-91: 97-101.
    Direct Link  |  
  53. Fang, T.H., W.J. Chang and Y.C. Fan, 2010. Molecular dynamics of nanoindentation with conical carbon indenters on graphite and diamond. Nano, 5: 231-236.
    CrossRef  |  
  54. Chang, W.J. and H.L. Lee, 2010. Buckling temperature of a single-walled carbon nanotube using nonlocal Timoshenko beam model. J. Comput. Theoretical Nanosci., 7: 2367-2371.
    CrossRef  |  
  55. Lee, H.L., Y.C. Yang, W.J. Chang and T.S. Wu, 2009. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance. Applied Math. Comput., 209: 211-221.
    Direct Link  |  
  56. Lee, H.L., W.J. Chang, Y.C. Yang and S.S. Chu, 2009. Vibration of scanning near-field optical microscope probe with laser-induced thermal effect using timoshenko beam theory. Applied Physics B: Lasers Optics, 97: 653-659.
    Direct Link  |  
  57. Lee, H.L., T.H. Fang and W.J. Chang, 2009. Effect of thermal vibrations on the resonant frequency of cantilever for scanning thermal microscopy nanomachining. J. Applied Phys., Vol. 105, 10.1063/1.3031761.
    CrossRef  |  Direct Link  |  
  58. Lee, H.L. and W.J. Chang, 2009. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. J. Phys. Condensed Matt., .
    PubMed  |  
  59. Lee, H.L. and W.J. Chang, 2009. Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Physica E: Low-Dimens. Syst. Nanostructures, 41: 529-532.
    Direct Link  |  
  60. Lee, H.L. and W.J. Chang, 2009. Response to comment on free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. J. Applied Physics, Vol. 105, .
    Direct Link  |  
  61. Lee, H.L. and W.J. Chang, 2009. Effects of damping on the vibration frequency of atomic force microscope cantilevers using the timoshenko beam model. Japanese J. Applied Phys., Vol. 48, .
    Direct Link  |  
  62. Lee, H.L. and W.J. Chang, 2009. A closed-form solution for critical buckling temperature of a single-walled carbon nanotube. Phys. E: Low-Dimens. Syst. Nanostruct., 41: 1492-1494.
    CrossRef  |  
  63. Hsu, J.C., H.L. Lee and W.J. Chang, 2009. Thermal buckling of double-walled carbon nanotubes. J. Applied Phys., Vol. 105, 10.1063/1.3130406.
    CrossRef  |  
  64. Fang, T.H., W.J. Chang, Y.C. Fan and C.I. Weng, 2009. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation. Applied Surface Sci., 255: 8931-8934.
    Direct Link  |  
  65. Fang, T.H., W.J. Chang, S.H. Kang and J.H. Liou, 2009. Effect of nitrogen doping on nanomechanical and surface properties of silicon film. Curr. Applied Phys., 9: 1241-1245.
    Direct Link  |  
  66. Fang, T.H., W.J. Chang, S.H. Kang and C.C. Chu, 2009. Nanomechanical behavior of human molars soaked in slight acid solutions. Modern Phys. Lett. B, 23: 3115-3124.
    Direct Link  |  
  67. Fang, T.H., W.J. Chang, C.M. Lin and C.C. Chang, 2009. Cyclic nanoindentation of semiconductor and metal thin films. Int. J. Modern Phys. B, 23: 5639-5647.
    Direct Link  |  
  68. Fang, T.H., R.P. Chang and W.J. Chang, 2009. Physical Characteristics of Carbon Nanotubes: Experiments and Analysis. In: Carbon Nanotubes: New Research, Ottenhouse, A.P. (Ed.). Chapter 13. Nova Science Publishers, New York, USA., ISBN: 978-1-60692-236-1, pp: 407-432.
  69. Fang, T.H., C.D. Wu, W.J. Chang and S.S. Chi, 2009. Effect of thermal annealing on nanoimprinted Cu-Ni alloys using molecular dynamics simulation. Applied Surface Sci., 255: 6043-6047.
    Direct Link  |  
  70. Chu, S.S., T.H. Fang and W.J. Chang, 2009. Modelling of coupled heat and moisture transfer in porous construction materials. Math. Comput. Model., 50: 1195-1204.
    Direct Link  |  
  71. Chang, W.J. and H.L. Lee, 2009. Free vibration of a single-walled carbon nanotube containing a fluid flow using the timoshenko beam model. Phys. Lett., 373: 982-985.
    Direct Link  |  
  72. Yang, Y.C., W.J. Chang, T.H. Fang and S.C. Fang, 2008. Modelling of thermal conductance during microthermal machining with scanning thermal microscope using an inverse methodology. Phys. Lett. A, 372: 519-523.
    Direct Link  |  
  73. Lee, H.L. and W.J. Chang, 2008. Free transverse vibration of fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. J. Applied Phys., 103: 024302-024302-4.
    CrossRef  |  Direct Link  |  
  74. Lee, H.L. and W.J. Chang, 2008. Coupled lateral bending-torsional vibration sensitivity of atomic force microscope cantilever. Ultramicroscopy, 108: 707-711.
    PubMed  |  
  75. Hsu, J.C., R.P. Chang and W.J. Chang, 2008. Resonance frequency of chiral single-walled carbon nanotubes using timoshenko beam theory. Phys. Lett. A, 372: 2757-2759.
    CrossRef  |  Direct Link  |  
  76. Fang, T.H., W.J. Chang, C.M. Lin and W.C. Lien, 2008. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering. Applied Surface Sci., 254: 3436-3441.
    Direct Link  |  
  77. Fang, T.H., W.J. Chang and C.D. Wu, 2008. Effects of temperature and size on contact behavior of self-assembled alkanethiol cluster for dip-pen nanolithography. Microelectronic Eng., 85: 223-226.
    CrossRef  |  Direct Link  |  
  78. Fang, T.H., K.H. Chen and W.J. Chang, 2008. Characteristics of co-filled carbon nanotubes. Applied Surface Sci., 254: 1890-1894.
    Direct Link  |  
  79. Chen, W.L., Y.C. Yang, W.J. Chang and H.L. Lee, 2008. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe. Energy Convers. Manage., 49: 2117-2123.
    Direct Link  |  
  80. Chang, W.J., Y.C. Yang, W.L. Chen and H.L. Lee, 2008. An inverse problem of estimating the biot number in deep x-ray lithography. Applied Phys. B: Lasers Optics, 90: 155-162.
    CrossRef  |  Direct Link  |  
  81. Chang, W.J., T.Y.F. Chen and H.L. Lee, 2008. Vibration analysis of scanning near-field optical microscope using the timoshenko beam bodel. Jap. J. Applied Phys., 47: 3657-3660.
    CrossRef  |  Direct Link  |  
  82. Chang, W.J., H.L. Lee and Y.F. Chen, 2008. Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe. Ultramicroscopy, 108: 619-624.
    PubMed  |  
  83. Lin, C.M., W.J. Chang and T.H. Fang, 2007. Flip-chip underfill packaging considering capillary force, pressure difference and inertia effects. ASME J. Electron. Packag., 129: 48-55.
    CrossRef  |  
  84. Lee, H.L., W.J. Chang, W.L. Chen and Y.C. Yang, 2007. An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy. Ultramicroscopy, 107: 656-662.
    CrossRef  |  PubMed  |  
  85. Hsu, J.C., H.L. Lee and W.J. Chang, 2007. Flexural vibration frequency of atomic force microscope cantilevers using the timoshenko beam model. Nanotechnology, Vol. 18 10.1088/0957-4484/18/28/285503.
    CrossRef  |  
  86. Fang, T.H., W.J. Chang, D.M. Lu and W.C. Lien, 2007. Effects of gas composition on the growth of multi-walled carbon nanotube. Applied Surf. Sci., 253: 8749-8753.
    CrossRef  |  Direct Link  |  
  87. Fang, T.H., W.J. Chang and C.M. Lin, 2007. Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., 452-453: 715-720.
    CrossRef  |  
  88. Fang, T.H., C.D. Wu and W.J. Chang, 2007. Molecular dynamics analysis of nanoimprinted Cu-Ni alloys. Applied Surf. Sci., 253: 6963-6968.
    Direct Link  |  
  89. Fang, S.C., W.J. Chang and Y.H. Wang, 2007. Computation of chirality- and size-dependent surface young's moduli for single-walled carbon nanotubes. Phys. Lett. A, 371: 499-503.
    CrossRef  |  Direct Link  |  
  90. Chu, S.S. and W.J. Chang, 2007. Inverse estimated transient thermal responses of multi-coated optical fiber under time-dependent heat transfer environments. Optical Eng., 42: 018001-018007.
    CrossRef  |  
  91. Chang, W.J., T.H. Fang and C.I. Weng, 2007. Thermoviscoelastic stresses in thin films/substrate system. Thin Solid Films, 515: 3693-3697.
    CrossRef  |  
  92. Chang, W.J., T.H. Fang and Y.C. Yang, 2007. Thermoviscoelastic analysis of a polymeric film on an elastic substrate with a graded interlayer. Jpn. J. Applied Phys., 46: 1604-1607.
    CrossRef  |  
  93. Yang, Y.C. and W.J. Chang, 2006. Simultaneous inverse estimation for boundary heat and moisture fluxes of a double-layer annular cylinder with interface resistance. Applied Math. Comput., 176: 594-608.
    CrossRef  |  Direct Link  |  
  94. Lin, C.M., W.J. Chang and T.H. Fang, 2006. Reliability analysis of the fine pitch connection using anisotropic conductive film (ACF). Microelectron. J., 37: 565-568.
    CrossRef  |  Direct Link  |  
  95. Lin, C.M., T.H. Fang and W.J. Chang, 2006. Computational modeling of micro-fluid flow in a tubular microchannel. Mater. Sci. Forum, 505-507: 433-438.
    CrossRef  |  Direct Link  |  
  96. Lee, H.L., Y.C. Yang, W.J. Chang and S.S. Chu, 2006. Effect of Interactive damping on vibration sensitivities of V-shaped atomic force microscope cantilevers. Jpn. J. Applied Phys., 45: 6017-6021.
    CrossRef  |  
  97. Lee, H.L., Y.C. Yang and W.J. Chang, 2006. Hydrostatic pressure and thermal loading induced long-term optical effects in tightly jacketed double-coated optical fibers optical fibers. Applied Phys. B, 83: 601-607.
    CrossRef  |  
  98. Jian, S.R., W.J. Chang, T.H. Fang, L.W. Ji, Y.J. Hsiao and Y.S. Chang, 2006. Nanomechanical characteristics of BaxSr1-xTiO3 thin films. Mater. Sci. Eng., 131: 281-284.
    CrossRef  |  Direct Link  |  
  99. Hsu, J.C., T.H. Fang and W.J. Chang, 2006. Inverse modeling of a work piece temperature and melting depth during micro thermal machining by scanning thermal microscope. J. Applied Phys., 100: 064305-064306.
    CrossRef  |  
  100. Fang, T.H., W.J. Chang, C.M. Lin, S.R. Jian, L.W. Ji, Y.J. Hsiao and Y.S. Chang, 2006. Effect of annealing on the structural and mechanical properties of Ba0.7Sr0.3TiO3 thin films. Mater. Sci. Eng., 426: 157-161.
    CrossRef  |  Direct Link  |  
  101. Fang, T.H., W.J. Chang and S.L. Lin, 2006. Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface. Applied Surf. Sci., 253: 1649-1654.
    CrossRef  |  
  102. Fang, T.H., W.J. Chang and J.W. Chiu, 2006. Study on coalescent properties of ZnO nanoclusters using molecular dynamics simulation and experiment. Microelectron. J., 37: 722-727.
    CrossRef  |  Direct Link  |  
  103. Fang, T.H., W.J. Chang and C.I. Weng, 2006. Nanoindentation and nanomachining characteristics of gold and platinum thin films. Mater. Sci. Eng., 430: 332-340.
    CrossRef  |  
  104. Fang, T.H. and W.J. Chang, 2006. The Application of Molecular Dynamics Simulation to Nanotechnology and Related Experiments. In: Nanophysics, Nanoclusters and Nanodevices, Gehar, K.S. (Ed.). Chapter 5. Nova Science Publishers, New York, USA., ISBN: 1-59454-852-8, pp: 141-182.
  105. Fang, T.H. and W.J. Chang, 2006. Nanomechanical characterization of amorphous hydrogenated carbon thin films. Applied Surf. Sci., 252: 6243-6248.
    CrossRef  |  Direct Link  |  
  106. Chang, W.J. and T.H. Fang, 2006. An inverse method for determining the interaction force between the probe and sample using scanning near-field optical microscopy. Phys. Lett. A, 348: 260-265.
    CrossRef  |  Direct Link  |  
  107. Yang, Y.C., H.L. Lee and W.J. Chang, 2005. An inverse problem in simultaneously estimating boundary moisture fluxes in a porous annular cylinder. Acta Mech., 179: 131-144.
    CrossRef  |  Direct Link  |  
  108. Lin, C.M., W.J. Chang and T.H. Fang, 2005. Analysis of new Anisotropic Conductive Film (ACF). IEEE Trans. Device Mater. Reliab., 5: 694-700.
    CrossRef  |  Direct Link  |  
  109. Lin, C.M., M.H. Su and W.J. Chang, 2005. The prediction of failure probability in Anisotropic Conductive Adhesive (ACA). IEEE Trans. Device Mater. Reliab., 5: 255-261.
    CrossRef  |  Direct Link  |  
  110. Lee, H.L., W.J. Chang and Y.C. Yang, 2005. Viscoelastic analysis of optical effects in double-coated optical fibers induced by axial strain and hydrostatic pressure. Mater. Chem. Phys., 91: 80-87.
    CrossRef  |  Direct Link  |  
  111. Lee, H.L., W.J. Chang and Y.C. Yang, 2005. Flexural sensitivity of a V-shaped cantilever of an atomic force microscope. Mater. Chem. Phys., 92: 438-442.
    CrossRef  |  Direct Link  |  
  112. Fang, T.H., W.J. Chang and S.L. Tsai, 2005. Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation. Microelectron. J., 36: 55-59.
    CrossRef  |  Direct Link  |  
  113. Fang, T.H., W.J. Chang and C.M. Lin, 2005. Nanoindentation and nanoscratch characteristics of si and gaas. Microelectron. Eng., 77: 389-398.
    CrossRef  |  Direct Link  |  
  114. Fang, T.H., W.J. Chang and C.I. Weng, 2005. Surface analysis of nanomachined films using atomic force microscopy. Mat. Chem. Phys., 92: 379-383.
    CrossRef  |  Direct Link  |  
  115. Fang, T.H. and W.J. Chang, 2005. Nanomechanical characteristics of SnO2: F thin films deposited by chemical vapor deposition. Applied Surf. Sci., 252: 1863-1869.
    CrossRef  |  Direct Link  |  
  116. Fang, T.H. and W.J. Chang, 2005. Microthermal machining using scanning thermal microscopy. Applied Surf. Sci., 240: 312-317.
    CrossRef  |  Direct Link  |  
  117. Chang, W.J., Y.C. Yang and C.M. Lin, 2005. Estimating thermal transport in deep x-ray lithography with an inversion method. Applied Phys. B, 81: 543-548.
    CrossRef  |  Direct Link  |  
  118. Chang, W.J., T.H. Fang, H.L. Lee and Y.C. Yang, 2005. Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe. Ultramicroscopy, 102: 85-92.
    CrossRef  |  Direct Link  |  
  119. Chang, W.J., T.H. Fang and C.M. Lin, 2005. Thermally induced viscoelastic stresses in multilayer thin films. J. Applied Phys., 97: 103521-103524.
    CrossRef  |  Direct Link  |  
  120. Chang, W.J., C.M. Lin, J.F. Lee and S.L. Lin, 2005. Inverse determination of tip-sample damping force in atomic force microscopy. Phys. Lett. A, 343: 79-84.
  121. Chang, W.J. and T.H. Fang, 2005. Modelling of the solid-liquid interface during laser processing using an inverse methodology. Applied Phys. B, 80: 373-376.
    CrossRef  |  
  122. Yang, Y.C., S.S. Chu and W.J. Chang, 2004. Thermally induced optical effects in optical fibers by inverse methodology. J. Applied Phys., 95: 5159-5165.
    CrossRef  |  Direct Link  |  
  123. Wu, T.S., W.J. Chang and J.C. Hsu, 2004. Effect of tip length and normal and lateral contact stiffness on the flexural vibration responses of atomic force microscope cantilevers. Microelectron. Eng., 71: 15-20.
    CrossRef  |  Direct Link  |  
  124. Lin, C.M. and W.J. Chang, 2004. Simulation of underfill flowing and curing in flip-chip packaging with flat extension runner. Int. J. Eng. Simul., 5: 9-15.
  125. Fang, T.H., W.J. Chang and S.C. Liao, 2004. Effects of temperature and aperture size on nanojet ejection process by molecular dynamics simulation. Microelectron. J., 35: 687-691.
    CrossRef  |  Direct Link  |  
  126. Fang, T.H. and W.J. Chang, 2004. Phase transformation of fullerenes using molecular dynamics simulation. Microelectron. J., 35: 581-583.
    CrossRef  |  Direct Link  |  
  127. Fang, T.H. and W.J. Chang, 2004. Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning probe microscopy. Phys. B Condens. Matter, 352: 190-199.
    CrossRef  |  Direct Link  |  
  128. Fang, T.H. and W.J. Chang, 2004. Nanoindentation characteristics on polycarbonate polymer film. Microelectron. J., 35: 595-599.
    CrossRef  |  Direct Link  |  
  129. Chang, W.J., T.H. Fang and C.I. Weng, 2004. Inverse determination of the cutting force on nanoscale processing using atomic force microscopy. Nanotechnology, 15: 427-430.
    CrossRef  |  Direct Link  |  
  130. Chang, W.J., J.C. Hsu and T.H. Lai, 2004. Inverse calculation of the tip-sample interaction force in atomic force microscopy by the conjugate gradient method. J. Phys. D Applied Phy., 37: 1123-1126.
    CrossRef  |  Direct Link  |  
  131. Chang, W.J. and T.H. Fang, 2004. The Study of AFM Probe Modal Sensitivity and Nanolithography. In: Trends in Nanotechnology Research, Dirote, E.V. (Ed.). Chapter 1. Nova Science Publishers, New York, USA., ISBN: 1-59454-091-8, pp: 1-29.
  132. Chang, W.J. and T.H. Fang, 2004. Nanomechanical properties studied by atomic force microscopy in combination with an inverse methodology. J. Applied Phys., 96: 6712-6716.
    CrossRef  |  Direct Link  |  
  133. Fang, T.H., W.J. Chang and S.C. Liao, 2003. Simulated nanojet ejection process by spreading droplets on a solid surface. J. Phys. Condens. Matter, 15: 8263-8270.
    CrossRef  |  Direct Link  |  
  134. Fang, T.H. and W.J. Chang, 2003. Sensitivity analysis of scanning near-field optical microscope probe. Opt. Laser Technol., 35: 267-271.
    CrossRef  |  Direct Link  |  
  135. Fang, T.H. and W.J. Chang, 2003. Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique. Microelectron. Eng., 65: 231-238.
    CrossRef  |  Direct Link  |  
  136. Fang, T.H. and W.J. Chang, 2003. Effects of AFM-based nanomachining process on aluminum surface. J. Phys. Chem. Solids, 64: 913-918.
    CrossRef  |  Direct Link  |  
  137. Fang, T.H. and W.J. Chang, 2003. Effect of freon flow rate on tin oxide thin films deposited by chemical vapor deposition. Applied Surf. Sci., 220: 175-180.
    CrossRef  |  
  138. Chu, S.S. and W.J. Chang, 2003. Inverse problem in an axisymmetric multiplayer annular cylinder with an interlayer thermal resistance. Int. Commun. Heat Mass Transfer, 30: 379-390.
  139. Chang, W.J., T.H. Fang and H.M. Chou, 2003. Effect of interactive damping on sensitivity of flexural and torsional vibration modes of rectangular AFM cantilevers. Phys. Lett. A, 312: 158-165.
    CrossRef  |  Direct Link  |  
  140. Chang, W.J., 2003. Viscoelastic analysis of hydrostatic pressure induced optical effects in double-coated optical fibers. J. Applied Phys., 93: 270-273.
    CrossRef  |  Direct Link  |  
  141. Chang, W.J., 2003. Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron. Eng., 65: 239-246.
    CrossRef  |  Direct Link  |  
  142. Chang, W.J. and T.H. Fang, 2003. Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation. J. Phys. Chem. Solids, 64: 1279-1283.
    CrossRef  |  
  143. Chang, W.J. and S.S. Chu, 2003. Analytical solution of flexural vibration responses on taped atomic force microscope cantilevers. Phys. Lett. A, 309: 133-137.
    CrossRef  |  Direct Link  |  
  144. Yang, Y.C., U.C. Chen and W.J. Chang, 2002. An inverse problem of coupled thermoelasticity in predicting heat flux and thermal stresses by strain measurement. J. Therm. Stresses, 25: 265-281.
    Direct Link  |  
  145. Chu, S.S. and W.J. Chang, 2002. Hybrid numerical method for transient analysis of two-dimensional pin fins with variable heat transfer coefficients. Int. Commun. Heat Mass Transfer, 29: 367-376.
    CrossRef  |  Direct Link  |  
  146. Chen, U.C. and W.J. Chang, 2002. Thermally-induced optical effects in double-coated optical fibers by viscoelastic theory. Opt. Eng., 41: 1317-1323.
    CrossRef  |  Direct Link  |  
  147. Chang, W.J., U.C. Chen and H.M. Chou, 2002. Transient analysis of two-dimensional pin fins with non-constant base temperature. JSME Int. J., Ser. B Fluids Therm. Eng., 45: 331-337.
    CrossRef  |  Direct Link  |  
  148. Chang, W.J., 2002. Sensitivity of vibration modes of atomic force microscope cantilevers in continuous surface contact. Nanotechnology, 13: 510-514.
    CrossRef  |  Direct Link  |  
  149. Chang, W.J. and C.I. Weng, 2002. Heat and Mass Transfer in Porous Material. In: Transport Phenomena in Porous Media II, Ingham, D.B. and I. Pop (Eds.). Chapter 10. Pergamon, Oxford, UK., ISBN: 0-08-043965-9, pp: 257-275.
  150. Chen, U.C., W.J. Chang and J.C. Hsu, 2001. Two-dimensional inverse problem in estimating heat flux of pin fins. Int. Commun. Heat Mass Transfer, 28: 793-801.
    CrossRef  |  Direct Link  |  
  151. Yang, Y.C., W.J. Chang and H.L. Lee, 2000. Transient thermal loading induced microbending loss in carbon-coated optical fibers. J. Applied Phys., 88: 6987-6992.
    CrossRef  |  Direct Link  |  
  152. Chang, W.J., H.L. Lee and Y.C. Yang, 2000. Hydrostatic pressure and thermal loading induced optical effects in double-coated optical fibers. J. Applied Phys., 88: 616-620.
    CrossRef  |  
  153. Chang, W.J. and C.I. Weng, 2000. Small time behavior hygrothermal stresses in axisymmetric double-layer annular cylinders. J. Therm. Stresses, 23: 15-46.
    CrossRef  |  
  154. Chang, W.J. and C.I. Weng, 2000. An analytical solution to coupled heat and moisture diffusion transfer in porous materials. Int. J. Heat Mass Transfer, 43: 3621-3632.
    CrossRef  |  
  155. Chang, W.J. and C.I. Weng, 1999. Inverse problem of coupled heat and moisture transport for prediction of moisture distributions in an annular cylinder. Int. J. Heat Mass Transfer, 42: 2661-2672.
  156. Chang, W.J. and C.I. Weng, 1997. An Analytical solution of a transient hygrothermal problem in an axisymmetric double-layer annular cylinder by linear theory of coupled heat and moisture. Applied Math. Modelling, 21: 721-734.
    CrossRef  |  
  157. Chang, W.J., 1994. Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture. Applied Math. Modelling, 18: 467-473.
    CrossRef  |  Direct Link  |  
  158. Chen, T.C., C.I. Weng and W.J. Chang, 1992. Transient hygrothermal stresses induced in general plane problems by theory of coupled heat and moisture. J. Applied Mech., 59: s10-s16.
    CrossRef  |  Direct Link  |  
  159. Chang, W.J., T.C. Chen and C.I Weng, 1991. Transient hygrothermal stresses in an infinitely long annular cylinder: Coupling of heat and moisture. J. Therm. Stresses, 14: 439-454.
    CrossRef  |