Dr. Murugan   Ramalingam
My Social Links

Dr. Murugan Ramalingam

Associate Professor
Christian Medical College, India


Share this Profile



Advertisement
Event

Biography

Dr. Murugan Ramalingam is working as Professor at Christian Medical College, India. He has completed his Ph.D. in Biomaterials Science from University of Madras, Chennai, India. His main of interest related to Biomedical Sciences, Physical Science Engineering, and Stem Cells, Tissue Engineering, and Nanotechnology. His area of expertise includes Stem Cell, Hydroxyapatite, Tissue Engineering, Hydrogel, and Nanofiber. He has 10 publications in journals as author/co-author.

Area of Interest:

Biomedical Sciences
100%
Nanomaterials
62%
Stem Cell
90%
Tissue Engineering
75%
Hydrogels
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Rana, D., H. Zreiqat, N.B. Jessel, S. Ramakrishna and R. Murugan, 2015. Development of decellularized scaffolds for stem cell-driven tissue engineering. J. Tissue Eng. Reg. Med., 10.1002/term.2061.
    CrossRef  |  Direct Link  |  
  2. Ramasamy, T., J.O. Kim, C.S. Yong, K. Umadevi and D. Rana et al., 2015. Novel Core-Shell Nanocapsules for the Tunable Delivery of Bioactive rhEGF: Formulation, Characterization and Cytocompatibility Studies. J. Biomater. Tissue Eng., 5: 730-743.
    CrossRef  |  Direct Link  |  
  3. Patil, S.J., A.V. Patil, C.G. Dighavkar, K.S. Thakare and R.Y. Borase et al., 2015. Semiconductor metal oxide compounds based gas sensors: A literature review. Front. Mater. Sci., 9: 14-37.
    CrossRef  |  Direct Link  |  
  4. Ostrovidov, S., S. Ahadian, J.R. Azcon, V. Hosseini and T. Fujie et al., 2015. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J. Tissue Eng. Reg. Med., 10.1002/term.1956.
    CrossRef  |  Direct Link  |  
  5. Ostrovidov, S., R. Sadeghian, S. Salehi, T. Fujie, H. Bae, R. Murugan and A. Khademhosseini, 2015. Stem cell differentiation toward the myogenic lineage for muscle tissue regeneration: A focus on muscular dystrophy. Stem Cell Rev. Rep., 11: 866-884.
    CrossRef  |  Direct Link  |  
  6. Murugan, R. and D. Rana, 2015. Impact of nanotechnology in induced pluripotent stem cells-driven tissue engineering and regenerative medicine. J. Bionanosci., 9: 13-21.
    CrossRef  |  Direct Link  |  
  7. Campos, J., C. Jimenez, C. Trigo, P. Ibarra and D. Rana et al., 2015. Quartz Crystal Microbalance with Dissipation Monitoring: A Powerful Tool for BioNanoScience and Drug Discovery. J. Bionanosci., 9: 249-260.
    CrossRef  |  Direct Link  |  
  8. Ahadian, S., R. Sadeghian, S. Salehi, S. Ostrovidov, H. Bae, R. Murugan and A. Khademhosseini, 2015. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate Chem., 26: 1984-2001.
    CrossRef  |  Direct Link  |  
  9. Ahadian, S., M. Estili, V.J. Surya, J. Ramon-Azcon and X. Liang et al., 2015. Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 7: 6436-6443.
    CrossRef  |  Direct Link  |  
  10. Varadarajan, N., R. Balu, D. Rana, R. Murugan, and T.S.S. Kumar, 2014. Accelerated sonochemical synthesis of calcium deficient hydroxyapatite nanoparticles: Structural and morphological evolution. J. Biomater. Tissue Eng., 4: 295-299.
    CrossRef  |  Direct Link  |  
  11. Sampathkumar, K., S. Arulkumar and R. Murugan, 2014. Advances in stimuli responsive nanobiomaterials for cancer therapy. J. Biomed. Nanotechnol., 10: 367-382.
    CrossRef  |  Direct Link  |  
  12. Rana, D., T.S.S. Kumar and R. Murugan, 2014. Cell-laden hydrogels for tissue engineering. J. Biomater. Tissue Eng., 4: 507-535.
    CrossRef  |  Direct Link  |  
  13. Ostrovidov, S., V. Hosseini, S. Ahadian, T. Fujie, S.P. Parthiban and R. Murugan, 2014. Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Eng., 20: 403-436.
    CrossRef  |  Direct Link  |  
  14. Ostrovidov, S., X. Shi, L. Zhang, X. Liang and S.B. Kim et al., 2014. Myotube formation on gelatin nanofibers-multiwalled carbon nanotubes hybrid scaffolds. Biomater., 35: 6268-6277.
  15. Obregon, R., J.R. Azcon, S. Ahadian, H. Shiku, H. Bae, R. Murugan and T. Matsue, 2014. The use of microtechnology and nanotechnology to fabricate vascularized tissues. J. Nanosci. Nanotechnol., 14: 487-500.
    CrossRef  |  Direct Link  |  
  16. Azcon, J.R., S. Ahadian, R. Obregon, H. Shiku, R. Murugan and T. Matsue, 2014. Applications of carbon nanotubes in stem cell research. J. Biomed. Nanotechnol., 10: 2539-2561.
    CrossRef  |  Direct Link  |  
  17. Ahadian, S., J.R. Azcon, H. Chang, X. Liang and H. Kaji et al., 2014. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Adv., 4: 9534-9541.
    CrossRef  |  Direct Link  |  
  18. Ahadian, S., J.R. Azcon, M. Estili, X. Liang and H. Shiku et al., 2014. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Sci. Rep., 10.1038/srep04271.
    CrossRef  |  Direct Link  |  
  19. Seidi, A., K. Sampathkumar, A. Srivastava, S. Ramakrishna and R. Murugan, 2013. Gradient nanofiber scaffolds for tissue engineering. J. Nanosci. Nanotechnol., 13: 4647-4655.
    CrossRef  |  Direct Link  |  
  20. Ramon‐Azcon, J., S. Ahadian, M. Estili, X. Liang and S. Ostrovidov et al., 2013. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv. Mater., 25: 4028-4034.
  21. Murugan, R., S. Ramakrishna and R. Rutledge, 2013. Preface to a special issue on Advances in Electrospinning of Nanofibers and Their Biomedical Applications. J. Nanosci. Nanotechnol., 13: 4645-4646.
  22. Murugan, R., M. Young, V. Thomas, L. Sun and L.C. Chow et al., 2013. Nanofiber scaffold gradients for interfacial tissue engineering. J. Biomater. Appli., 27: 695-705.
    CrossRef  |  Direct Link  |  
  23. Ahadian, S., S. Ostrovidov, V. Hosseini, H. Kaji, R. Murugan, H. Bae and A. Khademhosseini, 2013. Electrical simulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 9: 87-91.
    CrossRef  |  Direct Link  |  
  24. Sharma, Y., A. Tiwari, S. Hattori, D. Terada, A.K. Sharma, R. Murugan and H. Kobayashi, 2012. Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. Int. J. Biol. Macromol., 51: 627-631.
    CrossRef  |  Direct Link  |  
  25. Seidi, A. and R. Murugan, 2012. Impact of gradient biomaterials on interface tissue engineering. J. Biomater. Tissue Eng., 2: 89-99.
    CrossRef  |  Direct Link  |  
  26. Ostrovidov, S., N. Annabi, A. Seidi, R. Murugan, F. Dehghani, H. Kaji and A. Khademhosseini, 2012. Controlled release of drugs from gradient hydrogels for high throughput screening. Analy. Chem., 84: 1302-1309.
    CrossRef  |  Direct Link  |  
  27. Hosseini, V., S. Ahadian, S. Ostrovidov, G.C. Unal and S. Chen et al., 2012. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng., 18: 2453-2465.
    CrossRef  |  Direct Link  |  
  28. Seidi, A., R. Murugan, I. E. Hannachi, S. Ostrovidov and A. Khademhosseini, 2011. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomaterialia, 7: 1441-1451.
    CrossRef  |  Direct Link  |  
  29. Seidi, A., H. Kaji, N. Annabi, S. Ostrovidov, R. Murugan and A. Khademhosseini, 2011. A microfluidic-based neurotoxin concentration gradient for the generation of in vitro model of Parkinson's disease. Biomicrofluidics, 10.1063/1.3580756.
    CrossRef  |  Direct Link  |  
  30. Seidi, A. and R. Murugan, 2011. Engineering of gradient biomaterials as biomimetic systems for tissue engineering. J. Biomater. Tissue Eng., 1: 139-148.
    CrossRef  |  Direct Link  |  
  31. Liao, S., S. Ramakrishna and R. Murugan, 2011. Development of nanofiber biomaterials and stem cells in tissue engineering. J. Biomater. Tissue Eng., 1: 111-128.
    CrossRef  |  Direct Link  |  
  32. Cho, Y.N., J.S. Brumbach, R. Murugan and Z.S. Haidar, 2011. RNAi Therapeutics: Current status of nanoncologic siRNA delivery systems. J. Bionanosci., 5: 1-17.
    CrossRef  |  Direct Link  |  
  33. Balu, R., T.S.S. Kumar, R. Murugan and S. Ramakrishna, 2011. Electrospun polycaprolactone/poly(1,4-butyleneadipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J. Biomater. Tissue Eng., 1: 30-39.
  34. Simon, C.G., Y. Yang, S.M. Dorsey, R. Murugan and K. Chatterjee, 2010. 3D polymer scaffold arrays. Methods Mol. Biol., 671: 161-174.
    CrossRef  |  Direct Link  |  
  35. Murugan, R. and A. Tiwari, 2010. Spatially controlled cell growth using patterned biomaterials. Adv. Mater. Lett., 1: 179-187.
    CrossRef  |  Direct Link  |  
  36. Joo, V.S., T.G. Ramasamy, R. Murugan and Z.S. Haidar, 2010. Nanoncology: A State-of-Art Update. J. Bionanosci., 4: 1-13.
    CrossRef  |  Direct Link  |  
  37. Murugan, R., P. Molnar, K.P. Rao and J.J. Hickman, 2009. Biomaterial surface patterning of self-assembled monolayers for controlling neuronal cell behaviour. Int. J. Biomed. Eng. Tech., 2: 104-134.
    CrossRef  |  Direct Link  |  
  38. Murugan, R., S. Ramakrishna and K.P. Rao, 2008. Analysis of bovine-derived demineralized bone extracts. J. Mater. Sci. Mater. Med., 19: 2423-2426.
    CrossRef  |  Direct Link  |  
  39. Liao, S., R. Murugan, C.K. Chan and S. Ramakrishna, 2008. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J. Mech. Biomed. Mater., 1: 252-260.
    CrossRef  |  Direct Link  |  
  40. Murugan, R., Z.M. Huang, F. Yang and S. Ramakrishna, 2007. Nano-fibrous scaffold engineering using electrospinning. J. Nanosci. Nanotechnol., 7: 4595-4603.
  41. Murugan, R. and S. Ramakrishna, 2007. Development of cell-responsive nanophase hydroxyapatite for tissue engineering. Am. J. Biochem. Biotehcnol., 3: 118-124.
    CrossRef  |  Direct Link  |  
  42. Murugan, R. and S. Ramakrishna, 2007. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng., 13: 1845-1866.
    CrossRef  |  Direct Link  |  
  43. Christenson, E.M., K.S. Anseth, J.J.J.P. van de Beucken, C.K. Chan and B. Ercan et al., 2007. Nanobiomaterials applications in orthopaedics. J. Ortho. Res., 25: 11-22.
    CrossRef  |  Direct Link  |  
  44. Murugan, R., T.S.S. Kumar and S. Ramakrishna, 2006. Scaffolds for bone tissue reconstruction from biological apatite. Trends Biomater. Artif. Organs., 20: 35-39.
  45. Murugan, R., S. Ramakrishna and K.P. Rao, 2006. Nanoporous hydroxy-carbonate apatite scaffolds made of natural bone. Mater. Lett., 60: 2844-2847.
    Direct Link  |  
  46. Murugan, R. and S. Ramakrishna, 2006. Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomaterialia, 2: 201-206.
    CrossRef  |  Direct Link  |  
  47. Murugan, R. and S. Ramakrishna, 2006. Nano-featured scaffolds for tissue engineering: spinning methodologies. Tissue Eng., 12: 435-447.
  48. Murugan, R. and S. Ramakrishna, 2006. In-situ formation of recombinant humanlike collagen−hydroxyapatite nanohybrid through bionic approach. Appl. Phy. Lett., 10.1063/1.2202138.
    CrossRef  |  Direct Link  |  
  49. Murugan, R. and S. Ramakrishna, 2006. Designing biological apatite suitable for neomycin delivery. J. Mater. Sci., 41: 4343-4347.
    CrossRef  |  Direct Link  |  
  50. Chan, C.K., T.S.S. Kumar, S. Liao, R. Murugan, M. Ngiam and S. Ramakrishna, 2006. Biomimetic nanocomposites for bone graft applications. Nanomedicine, 1: 177-188.
    CrossRef  |  Direct Link  |  
  51. Yang, F., R. Murugan, S. Wang and S. Ramakrishna, 2005. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26: 2603-2610.
    CrossRef  |  Direct Link  |  
  52. Murugan, R., T.S.S. Kumar, F. Yang and S. Ramakrishna, 2005. Hydroxyl carbonateapatite hybrid bone composites using carbohydrate polymer. J. Comp. Mater., 39: 1159-1167.
    CrossRef  |  Direct Link  |  
  53. Murugan, R. and S. Ramakrishna, 2005. Porous bovine hydroxyapatite for drug delivery. Hip Int., 3: 93-97.
    Direct Link  |  
  54. Murugan, R. and S. Ramakrishna, 2005. Development of nanocomposites for bone grafting. Comp. Sci. Technol., 65: 2385-2406.
    CrossRef  |  Direct Link  |  
  55. Murugan, R. and S. Ramakrishna, 2005. Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth Des., 5: 111-112.
    CrossRef  |  Direct Link  |  
  56. Liao, S., R. Murugan, C.K. Chan and S. Ramakrishna, 2005. Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J. Cryst. Growth, 274: 209-213.
    CrossRef  |  Direct Link  |  
  57. Babu, N.R., T.S.S. Kumar, R. Murugan and K.P. Rao, 2005. Mechanochemical synthesis of nanocrystalline fluorinated hydroxyapatite. Int. J. Nanosci., 4: 643-649.
    CrossRef  |  Direct Link  |  
  58. Yang, F., R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma and S. Wang, 2004. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25: 1891-1900.
    CrossRef  |  PubMed  |  Direct Link  |  
  59. Murugan, R. and S. Ramakrishna, 2004. Modification of demineralized bone matrix by chemical route. J. Mater. Chem., 14: 2041-2045.
    CrossRef  |  Direct Link  |  
  60. Murugan, R. and S. Ramakrishna, 2004. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomater., 25: 3073-3080.
    CrossRef  |  Direct Link  |  
  61. Murugan, R. and S. Ramakrishna, 2004. Ce(IV) ion initiated graft polymerization of glycidylmethacrylate onto a demineralized bone matrix: Effect of reaction parameters. Colloid Polym. Sci., 282: 1316-1322.
    CrossRef  |  Direct Link  |  
  62. Murugan, R. and S. Ramakrishna, 2004. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25: 3829-3835.
    CrossRef  |  Direct Link  |  
  63. katakam, S., D.S.R. Krishna, R. Murugan and T.S.S. Kumar, 2003. Processing of calcium phosphate based functionally graded bioceramics using microwaves. Trends Biomater. Artif. Organs., 17: 24-27.
  64. Murugan, R. and S. Ramakrishna, 2003. Effect of zirconia on the formation of calcium phosphate bioceramics under microwave irradiation. Mater. Lett., 58: 230-234.
    CrossRef  |  Direct Link  |  
  65. Murugan, R. and K.P. Rao, 2003. Grafting of glycidylmethacrylate upon coralline hydroxyapatite in conjugation with demineralized bone matrix using redox initiating system. Macromol. Res., 11: 14-18.
    CrossRef  |  Direct Link  |  
  66. Murugan, R. and K.P. Rao, 2003. Grafting of glycidylmethacrylate onto demineralized xenogeneic bone in aqueous medium. Polym. Bull., 49: 395-402.
    CrossRef  |  Direct Link  |  
  67. Murugan, R. and K.P. Rao, 2003. Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J. Biomater. Sci. Poly. Ed., 14: 457-467.
    CrossRef  |  Direct Link  |  
  68. Murugan, R., T.S.S. Kumar and K.P. Rao, 2002. Fluorinated bovine hydroxyapatite: Preparation and characterization. Mater. Lett., 57: 429-433.
    CrossRef  |  Direct Link  |  
  69. Murugan, R., K.P. Rao and T.S.S. Kumar, 2002. Microwave synthesis of bioresorbable carbonated hydroxyapatite using goniopora. Key Eng. Mater., 240: 51-54.
    CrossRef  |  Direct Link  |  
  70. Murugan, R. and K.P. Rao, 2002. Controlled release of antibiotic from surface modified coralline hydroxyapatite. Trends Biomater. Artif. Organs., 16: 43-45.
    Direct Link  |  
  71. Murugan, R. and K.P. Rao, 2002. Biodegradable coralline hydroxyapatite composite gel using natural alginate. Key Eng. Mater., 240: 407-410.
    CrossRef  |  Direct Link  |