Dr. Ramasamy Ponalagusamy
My Social Links

Dr. Ramasamy Ponalagusamy

Professor(HAG)
Department of Mathematics, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India


Highest Degree
PostDoc Fellow in Finite Element Algorithm from Chuo University, Tokyo, Japan

Share this Profile



Advertisement
Event

Biography

Dr. R. Ponalagusamy is currently working as a Professor and guiding research students in the fields of development of parallel algorithm, DNA Computing, Fuzzy Decision Making and Biomechanics/Biorheology. He is also guiding research students in the fields of parallel numerical computing and Digital Image Processing. He received his Ph.D. in “Blood Flow through Stenosed Artery” from the Indian Institute of Technology, Bombay, in 1986. The Environmental Research Corporation, Tokyo, Japan, awarded him a post-doctoral fellowship for two years (1987-1988) at Chuo University, Tokyo. His prior work experience includes Lecturer and doing research in the field of Computational Fluid Mechanics, Assistant Professor and doing research in the development of Mathematical and Computer models in the field of Processing of Advanced Materials. He has so far produced Eleven Ph.Ds. in the fields of Computer models on Metal forming, DNA Computing, Image Processing, Parallel Algorithms and Biomechanics. He has been one of the Regional Editors in several International Journals and Associate Editor in International Journal. He is Editor-in-Chief, International Journal of Engineering Sciences, Advanced Computing and Bio-Technology (IJESACBT). He has been reviewer for more than fifteen International Journals. He has written two books on (i) Theory of Engineering Plasticity and (ii) Engineering Mathematics. He has published over 140 research papers in National and International Conferences and Journals (Thirty eight different International Journals). His current research areas include computational experimentation on bio-fluid mechanics including heat and mass transfer, plastic flow, finite element method, computer models on metal forming and powder metallurgical materials, wavelets, digital image processing, DNA Computing, Fuzzy Logic and development of parallel algorithms.

Area of Interest:

Biomedical Engineering
100%

Research Publications in Numbers

Books
2
Chapters
5
Articles
140
Abstracts
4

Selected Publications

  1. Ponalagusamy, R., R.T. Selvi and R. Padma, 2022. Modeling of pulsatile EMHD flow of non-Newtonian blood with magnetic particles in a tapered stenosed tube: A comparative study of actual and approximated drag force. Eur. Phys. J. Plus, Vol. 137. 10.1140/epjp/s13360-022-02434-y.
    CrossRef  |  Direct Link  |  
  2. Ponalagusamy, R., D. Murugan and S. Priyadharshini, 2022. Effects of rheology of non-Newtonian fluid and chemical reaction on a dispersion of a solute and implications to blood flow. Int. J. Appl. Comput. Math., Vol. 8. 10.1007/s40819-022-01312-6.
    CrossRef  |  Direct Link  |  
  3. Ponalagusamy, R. and J. Sangeetha, 2022. Electroosmotic effect on two immiscible (conducting–non-conducting) fluids flowing in the porous channel under magnetic field. J. Proc. Mech. Eng. 10.1177/09544089221131157.
    CrossRef  |  Direct Link  |  
  4. Ponalagusamy, R. and D. Murugan, 2022. Impact of variable viscosity, chemical reaction and electro-osmotic mechanism on the dispersal of solute through a uniform channel with permeable walls. Int. J. Appl. Comput. Math., 10.1007/s40819-022-01259-8.
    CrossRef  |  Direct Link  |  
  5. Ponalagusamy, R. and D. Murugan, 2022. Effect of electro-magneto-hemodynamic environs on dispersion of solute in the peristaltic motion through a channel with chemical reaction, wall properties and porous medium. Korea-Aust. Rheol. J., 34: 69-90.
    CrossRef  |  Direct Link  |  
  6. Murugan, D., A.K. Roy, R. Ponalagusamy and O.A. Beg, 2022. Tracer dispersion due to pulsatile casson fluid flow in a circular tube with chemical reaction modulated by externally applied electromagnetic fields. Int. J. Appl. Comput. Math., Vol. 8. 10.1007/s40819-022-01412-3.
    CrossRef  |  Direct Link  |  
  7. Manchi, R. and R. Ponalagusamy, 2022. Pulsatile flow of EMHD micropolar hybrid nanofluid in a porous bifurcated artery with an overlapping stenosis in the presence of body acceleration and joule heating. Braz. J. Phys., Vol. 52. 10.1007/s13538-022-01061-3.
    CrossRef  |  Direct Link  |  
  8. Selvi, R.T., R. Ponalagusamy and R. Padma, 2021. Influence of electromagnetic field and thermal radiation on pulsatile blood flow with nanoparticles in a constricted porous artery. Int. J. Applied Comput. Math., Vol. 7. 10.1007/s40819-021-01143-x.
    CrossRef  |  Direct Link  |  
  9. Ponalagusamy, R. and R. Manchi, 2021. Mathematical study on two-fluid model for flow of k–l fluid in a stenosed artery with porous wall. SN Applied Sci., Vol. 3. 10.1007/s42452-021-04399-6.
    CrossRef  |  Direct Link  |  
  10. Ponalagusamy, R. and R. Manchi, 2021. Biorheological model on pulsatile flow of blood (K–L fluid) through flexible stenotic tapered blood vessels. Int. J. Appl. Comput. Math., 10.1007/s40819-020-00942-y.
    CrossRef  |  Direct Link  |  
  11. Ponalagusamy, R. and D. Murugan, 2021. Impact of electro-magnetohydrodynamic nature on dispersion of solute in the peristaltic mechanism. J. Phys.: Conf. Ser., Vol. 1850. 10.1088/1742-6596/1850/1/012097.
    CrossRef  |  Direct Link  |  
  12. Ponalagusamy, R. and D. Murugan, 2021. Dispersion of a solute in blood flowing through narrow arteries with homogeneous first-order chemical reaction. Proc. Nat. Acad. Sci., India Sect. A: Phys. Sci., 10.1007/s40010-021-00753-w.
    CrossRef  |  Direct Link  |  
  13. Padma, R., R.T. Selvi and R. Ponalagusamy, 2021. Analysis of MHD pulsatile flow of jeffrey fluid in a diseased inclined tapered porous artery exposed to an inclined magnetic field. J. Phys.: Conf. Ser., Vol. 1850. 10.1088/1742-6596/1850/1/012039.
    CrossRef  |  Direct Link  |  
  14. Manchi, R. and R. Ponalagusamy, 2021. Modeling of pulsatile emhd flow of au-blood in an inclined porous tapered atherosclerotic vessel under periodic body acceleration. Arch. Applied Mech., 91: 3421-3447.
    CrossRef  |  Direct Link  |  
  15. Roy, A.K., A.K. Saha, R. Ponalagusamy and S. Debnath, 2020. Mathematical model on magneto-hydrodynamic dispersion in a porous medium under the influence of bulk chemical reaction. Korea-Australia Rheol. J., 32: 287-299.
    CrossRef  |  Direct Link  |  
  16. Ramasamy, P., 2020. Effects of magnetic force and non‐newtonian characteristics on squeeze film bearings. Asia-Pac. J. Chem. Eng., Vol. 15. 10.1002/apj.2510.
    CrossRef  |  Direct Link  |  
  17. Ponalagusamy, R. and R. Manchi, 2020. Particle–fluid two phase modeling of electro-magneto hydrodynamic pulsatile flow of jeffrey fluid in a constricted tube under periodic body acceleration. Eur. J. Mech. B/Fluids, 81: 76-92.
    CrossRef  |  Direct Link  |  
  18. Ponalagusamy, R. and R. Manchi, 2020. A study on two-layered (K.L-newtonian) model of blood flow in an artery with six types of mild stenoses. Applied Math. Computation, Vol. 367. 10.1016/j.amc.2019.124767.
    CrossRef  |  Direct Link  |  
  19. Padma, R., R. Ponalagusamy and R.S. Tamil, 2020. Corrigendum to “mathematical modeling of electro hydrodynamic non-newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field” [applied mathematics and computation, 362(2019) 124453]. Applied Math. Computation, Vol. 373. 10.1016/j.amc.2019.125031.
    CrossRef  |  Direct Link  |  
  20. Ponalagusamy, R. and R. Manchi, 2019. A four-layered model for flow of non-newtonian fluid in an artery with mild stenosis. Sādhanā, Vol. 44. 10.1007/s12046-019-1143-8.
    CrossRef  |  Direct Link  |  
  21. Padma, R., R.T. Selvi and R. Ponalagusamy, 2019. Effects of slip and magnetic field on the pulsatile flow of a jeffrey fluid with magnetic nanoparticles in a stenosed artery. Eur. Phys. J. Plus, Vol. 134. 10.1140/epjp/i2019-12538-9.
    CrossRef  |  Direct Link  |  
  22. Padma, R., R. Ponalagusamy and R.T. Selvi, 2019. Mathematical modeling of electro hydrodynamic non-newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field. Applied Math. Computation, Vol. 362. 10.1016/j.amc.2019.05.024.
    CrossRef  |  Direct Link  |  
  23. Priyadharshini, S. and R. Ponalagusamy, 2018. An unsteady flow of magnetic nanoparticles as drug carrier suspended in micropolar fluid through a porous tapered arterial stenosis under non-uniform magnetic field and periodic body acceleration. Comput. Applied Math., (In Press). 10.1007/s40314-018-0572-z.
    CrossRef  |  Direct Link  |  
  24. Priyadharshini, S. and R. Ponalagusamy, 2018. A numerical study on unsteady flow of herschel–bulkley nanofluid through an inclined artery with body acceleration and magnetic field. Int. J. Applied Comput. Math., Vol. 5. 10.1007/s40819-018-0589-4.
    CrossRef  |  Direct Link  |  
  25. Ponalagusamy, R., 2018. Mathematical analysis of flow of non-newtonian fluid due to metachronal beating of cilia in a tube and its physiological applications. Applied Math. Computation, 337: 545-561.
    CrossRef  |  Direct Link  |  
  26. Ponalagusamy, R. and S. Priyadharshini, 2018. Pulsatile MHD flow of a casson fluid through a porous bifurcated arterial stenosis under periodic body acceleration. Applied Math. Computation, 333: 325-343.
    CrossRef  |  Direct Link  |  
  27. Ponalagusamy, R. and S. Priyadharshini, 2018. Numerical investigation on two-fluid model (micropolar-Newtonian) for pulsatile flow of blood in a tapered arterial stenosis with radially variable magnetic field and core fluid viscosity. Comput. Applied Math., 37: 719-743.
    CrossRef  |  Direct Link  |  
  28. Ponalagusamy, R. and S. Priyadharshini, 2018. A numerical model on pulsatile flow of magnetic nanoparticles as drug carrier suspended in herschel–bulkley fluid through an arterial stenosis under external magnetic field and body force. Int. J. Comput. Math., 96: 1763-1786.
    CrossRef  |  Direct Link  |  
  29. Priyadharshini, S. and R. Ponalagusamy, 2017. Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration. Neural Comput. Applic., (In Press). 10.1007/s00521-017-3111-8.
    CrossRef  |  Direct Link  |  
  30. Priyadharshini, S. and R. Ponalagusamy, 2017. Computational model on pulsatile flow of blood through a tapered arterial stenosis with radially variable viscosity and magnetic field. Sādhanā, 42: 1901-1913.
    CrossRef  |  Direct Link  |  
  31. Ponalagusamy, R., 2017. Erratum to: Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells. Eur. Phys. J. Plus, Vol. 132. .
  32. Ponalagusamy, R., 2017. A two-layered suspension (particle-fluid) model for non-Newtonian fluid flow in a catheterized arterial stenosis with slip condition at the wall of stenosed artery. Korea-Aust. Rheol. J., 29: 87-100.
    CrossRef  |  Direct Link  |  
  33. Ponalagusamy, R. and S. Priyadharshini, 2017. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration. Korea-Aust. Rheol. J., 29: 303-316.
    CrossRef  |  Direct Link  |  
  34. Ponalagusamy, R. and S. Priyadharshini, 2017. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration. Comput. Meth. Programs Biomed., 142: 31-41.
    CrossRef  |  Direct Link  |  
  35. Ponalagusamy, R. and S. Priyadharshini, 2017. Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration. J. Mech. Med. Biol., Vol. 17, No. 8. 10.1142/S0219519417501093.
    CrossRef  |  Direct Link  |  
  36. Chandru, M., R. Ponalagusamy and P. Alphonse, 2017. A new fifth-order weighted runge-kutta algorithm based on heronian mean for initial value problems in ordinary differential equations. J. Applied Math. Inform., 35: 191-204.
  37. Ponalagusamy, R., 2016. Two-fluid model for blood flow through a tapered arterial stenosis: Effect of non-zero couple stress boundary condition at the interface. Int. J. Applied Comput. Math., 3: 807-824.
    CrossRef  |  Direct Link  |  
  38. Ponalagusamy, R., 2016. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells. Eur. Phys. J. Plus, Vol. 131. .
    Direct Link  |  
  39. Ponalagusamy, R., 2016. Particulate suspension Jeffrey fluid flow in a stenosed artery with a particle-free plasma layer near the wall. Korea-Aust. Rheol. J., 28: 217-227.
    CrossRef  |  Direct Link  |  
  40. Priyadharshini, S. and R. Ponalagusamy, 2015. Biorheological model on flow of herschel-bulkley fluid through a tapered arterial stenosis with dilatation. Applied Bionics Biomech. Vol. 2015. .
    Direct Link  |  
  41. Ponalagusamy, R., 2015. Corrigendum to a biomechanical approach to study the effect of body acceleration and slip velocity through stenotic artery. Applied Math. Comput., 261: 148-155.
  42. Ponalagusamy, R., 2015. Biological Study on Pulsatile Flow of Herschel-Bulkley Fluid in Tapered Blood Vessels. In: Emerging Trends in Computational Biology, Bioinformatics and Systems Biology-Algorithms and Software Tools, Tam, Q. and H. Arbnia (Eds.). Elsevier Publishers, Boston, USA., pp: 39-51.
  43. Ponalagusamy, R. and R.T. Selvi, 2015. Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis. Meccanica, 50: 927-943.
    CrossRef  |  Direct Link  |  
  44. Ponalagusamy, R. and K. Ponnammal, 2015. A parallel fourth order rosenbrock method: Construction, analysis and numerical comparison. Int. J. Applied Comput. Math, 1: 45-68.
    Direct Link  |  
  45. Jeyasimman, D., R. Narayanasamy and R. Ponalagusamy, 2015. Role of hybrid reinforcement on microstructural observation, characterization and consolidation behavior of AA 6061 nanocomposite. Adv. Powder Technol., 26: 1171-1182.
    CrossRef  |  Direct Link  |  
  46. Jeyasimman, D., K. Sivaprasad, S. Sivasankaran, R. Ponalagusamy, R. Narayanasamy and V. Iyer, 2015. Microstructural observation, consolidation and mechanical behaviour of AA 6061 nanocomposites reinforced by γ-Al 2O3 nanoparticles. Adv. Powder Technol., 26: 139-148.
    CrossRef  |  Direct Link  |  
  47. Velmanirajan, K., K. Anuradha, A.S. Abu Thaheer, R. Ponalagusamy and R. Narayanasamy, 2014. Statistical evaluation of forming limit diagram for annealed Al 1350 alloy sheets using first order reliability. Method. Applied Math. Model., 38: 145-167.
    CrossRef  |  
  48. Ponalagusamy, R. and R.T. Selvi, 2014. Brief communications: Two-layered model (Casson-Newtonian) for blood flow through an arterial stenosis with axially variable slip velocity at the wall. Int. J. Eng. Sci. Adv. Comput. Bio-Technol., 4: 71-74.
  49. Jeyasimman, D., R. Narayanasamy, R. Ponalagusamy, V. Anandakrishnan and M. Kamaraj, 2014. The effects of various reinforcements on dry sliding wear bbehaviour of AA 6061 Nanocomposites. Mater. Design, 64: 783-793.
    CrossRef  |  Direct Link  |  
  50. Geetha, S., V.L.G. Nayagam and R. Ponalagusamy, 2014. A complete ranking of incomplete interval information. Expert. Syst. Applic., 41: 1947-1954.
    CrossRef  |  
  51. Ponalagusamy, R. and R. Tamil Selvi, 2013. Blood flow in stenosed arteries with radially variable viscosity, peripheral layer thickness and magnetic field. Meccanica, 10.1007/s11012-013-9758-z.
    CrossRef  |  
  52. Zoraida, B.S.E., M. Arock, B.S.M. Ronald and R. Ponalagusamy, 2012. DNA algorithm employing temperature gradient for freeze-tag problem in swarm robotics. Trans. Inst. Meas. Control, 34: 278-290.
    CrossRef  |  
  53. Sivaraman, G., V.L.G. Nayagam and R. Ponalagusamy, 2012. Intuitionistic fuzzy interval information system. Int. J. Comput. Theory Eng., 4: 459-461.
    Direct Link  |  
  54. Ponalagusamy, R., R. Tamil Selvi and A.K. Banerjee, 2012. Mathematical model of pulsatile flow of non-Newtonian fluid in tubes of varying cross-sections and its implications to blood flow. J. Franklin Inst., 349: 1681-1698.
    CrossRef  |  
  55. Ponalagusamy, R., E. Kannan and M. Arock, 2012. Formation of machine cells in cellular manufacturing system using linear array with a reconfigurable pipelined bus system. Int. J. Math. Eng. Comput., 3: 17-27.
  56. Ponalagusamy, R., 2012. Mathematical analysis on effect of non-newtonian behaviour of blood on optimal geometry of microvascular bifurcation system. J. Franklin Inst., 349: 2861-2874.
  57. Ponalagusamy, R. and K. Ponnammal, 2012. Local truncation error for the parallel runge-kutta-fifth order methods. Inform. Technol. J., 11: 1141-1153.
    CrossRef  |  
  58. Ponalagusamy, R., R. Narayanasamy and K.R. Subramanian, 2011. Sheet metals forming limit stress and strain prediction based on new generalised yield criterion. Int. J. Comput. Mater. Sci. Surf. Eng., 4: 311-325.
    CrossRef  |  
  59. Ponalagusamy, R., P.J.A. Alphonse and M. Chandru, 2011. Development of new fifth-order fifth-stage runge kutta method based on heronian mean. Int. J. Eng. Sci. Adv. Comput. Bio-Technol., 2: 162-197.
  60. Ponalagusamy, R. and S. Senthilkumar, 2011. Investigation on time-multiplexing cellular neural network simulation by RKAHeM(4,4) technique. Int. J. Adv. Intell. Paradigms, 3: 43-66.
    CrossRef  |  Direct Link  |  
  61. Ponalagusamy, R. and R. Tamil Selvi, 2011. Blood flow through an arterial stenosis: New formula for computing peripheral plasma layer thickness. Int. J. Bio Sci. Bio Technol., 3: 27-38.
  62. Ponalagusamy, R. and R. Tamil Selvi, 2011. A study on two-layered model (Casson-Newtonian) for blood flow through an arterial stenosis: Axially variable slip velocity at the wall. J. Franklin Instit., 348: 2308-2321.
    CrossRef  |  Direct Link  |  
  63. Zoraida, B.S.E., M. Arock, B.S.M. Ronald and R. Ponalagusamy, 2010. A DNA-based algorithm for multiple travelling salesperson problem. Int. J. Prod. Technol. Manage. Res., 1: 25-29.
  64. Zoraida, B.S.E., M. Arock, B.S.M. Ronald and R. Ponalagusamy, 2010. A DNA-based algorithm for capacitated vehicle routing problem using temperature gradient technique. Int. J. Serv. Econ. Manage., 2: 371-384.
    CrossRef  |  
  65. Zoraida, B.S.E., M. Arock and R. Ponalagusamy, 2010. DNA algorithm employing temperature gradient for multiple travelling salesperson problem. Int. J. Comput. Appl., 1: 61-67.
  66. Zoraida, B.S.E., M. Arock and R. Ponalagusamy, 2010. An efficient algorithm for constructing DNA boolean circuit. Int. J. Comput. Appl., 1: 16-21.
  67. Ponalagusamy, R., R. Narayanasamy and K.R. Subramanian, 2010. A new form of generalised yield criteria of porous sintered powder metallurgy metals. Int. J. Eng. Sci. Comput. Bio-Technol., 1: 14-18.
  68. Ponalagusamy, R., 2010. Role of pulsatility on blood flow in an arterial stenosis. Int. J. Math. Eng. Comput., 1: 21-26.
  69. Ponalagusamy, R. and S. Senthilkumar, 2010. System of second order robot arm problem by an efficient numerical integration algorithm. Int. J. Comput. Mater. Sci. Surf. Eng., 3: 237-250.
    CrossRef  |  Direct Link  |  
  70. Ponalagusamy, R. and K. Ponnammal, 2010. New generalised plasticity equation for compressible powder metallurgy materials: A new parallel RK-Butcher method. Int. J. Nanomanuf., 6: 395-408.
    CrossRef  |  
  71. Zoraida, B.S.E., M. Arock, B.S.M. Ronald and R. Ponalagusamy, 2009. A novel generalized design methodology and rrealization of boolean operations using DNA. Biosystems, 97: 146-153.
    CrossRef  |  PubMed  |  
  72. Saravanan, C. and R. Ponalagusamy, 2009. Lossless grayscale image compression using source symbols reduction and huffman coding. Int. J. Image Process., 3: 246-251.
    Direct Link  |  
  73. Ponalagusamy, R. and S. Senthilkumar, 2009. Time-multiplexing CNN simulation using limiting formulas of RK(7,8). Res. J. Inform. Technol., 1: 1-16.
    CrossRef  |  Direct Link  |  
  74. Ponalagusamy, R. and S. Senthilkumar, 2009. Investigation on numerical solution for robot arm problem. J. Automation Mob. Robotics Intel. Syst., 3: 34-40.
    Direct Link  |  
  75. Ponalagusamy, R. and S. Senthilkumar, 2009. A new method of embedded fourth order with four stages to study raster CNN simulation. Int. J. Autom. Comput., 6: 285-294.
    CrossRef  |  Direct Link  |  
  76. Ponalagusamy, R. and S. Senthilkumar, 2009. A new fourth order embedded RKAHeM(4,4) method with error control on single layer/raster cellular neural network. Signal Image Video Process., 3: 303-305.
    CrossRef  |  
  77. Ponalagusamy, R. and S. Senthilkumar, 2009. A new fourth order embedded RKAHeM(4,4) method with error control for multilayer raster cellular neural network. Signal Image Video Process., 3: 1-11.
    CrossRef  |  Direct Link  |  
  78. Saravanan, C. and R. Ponalagusamy, 2008. Modeling and analysis of coding redundancy for gray scale images using statistical coding technique. Int. J. Inform. Process., 2: 41-48.
    Direct Link  |  
  79. Ponalagusamy, R., R. Narayanasamy, R. Venkatesan and S. Senthilkumar, 2008. Computer aided metal flow investigation in streamlined extrusion dies. Int. J. Mater. Des., 29: 1228-1239.
    CrossRef  |  Direct Link  |  
  80. Ponalagusamy, R., 2008. ERRATA on blood flow through an artery with mild stenosis: A two-layered model, different shapes of stenoses and slip velocity at the wall. J. Applied Sci., 8: 2191-2191.
  81. Ponalagusamy, R., 2008. Blood flow through an arterial stenosis: A two-layered model (Casson-Newtonian), different shapes of stenoses and axially variable slip velocity at the wall. Biorheology, 45: 153-154.
  82. Ponalagusamy, R., 2008. A novel and efficient computational algorithm of STWS for generalized linear non-singular/singular time varying systems. J. Software Eng., 2: 1-9.
    CrossRef  |  Direct Link  |  
  83. Ponalagusamy, R. and S. Senthilkumar, 2008. RK starters for multistep methods on a raster CNN simulation. J. Theoretical Applied Inform. Technol., 2: 117-126.
    Direct Link  |  
  84. Ponalagusamy, R. and S. Senthilkumar, 2008. Investigation on raster CNN simulation by numerical integration algorithms. J. Combinatorial Math. Combinatorial Comput., 67: 35-48.
  85. Ponalagusamy, R. and S. Senthilkumar, 2008. A comparison of RK-fourth orders of variety of means on multilayer raster CNN simulation. Trends Applied Sci. Res., 3: 242-252.
    CrossRef  |  Direct Link  |  
  86. Ponalagusamy, R. and R. Narayanasamy, 2008. A finite difference solution for open-die forging of sintered cylindrical billets. Mat. Design, 29: 1886-1892.
  87. Ponalagusamy, R. and K. Ponnammal, 2008. Investigations on robot arm model using a new parallel RK-fifth order algorithm. Int. J. Comput. Math. Sci. Appl., 2: 155-164.
  88. Ponalagusamy, R. and K. Ponnammal, 2008. A new parallel RK-fifth order algorithm for time varying network and first order initial value problems. J. Combinatorics Inform. Syst. Sci., 33: 397-409.
  89. Ponalagusamy, R. and C. Saravanan, 2008. Medical image compression using bi-orthogonal wavelets and artihmetic coding. Int. J. Comput. Math. Sci. Appl., 2: 81-88.
  90. Narayanasamy, R., R. Ponalagusamy and S. Raghuraman, 2008. The effect of strain rate sensitivity on theoretical prediction of limiting draw ratio for cylindrical cup drawing process. Mater. Des., 29: 884-890.
    CrossRef  |  
  91. Saravanan, C. and R. Ponalagusamy, 2007. Gaussian noise estimation technique for gray scale images using mean value. J. Theor. Applied Inform. Technol., 3: 68-73.
    Direct Link  |  
  92. Saravanan, C. and R. Ponalagusamy, 2007. Fast arithmetic coding for lossy image compression. Int. J. Comput. Math. Sci. Appl., 1: 257-265.
  93. Ponalagusamy, R., R. Narayanasamy and K.R. Subramanian, 2007. Prediction of limit strains in sheet metals by using new generalized yield criteria. Mat. Design, 28: 913-920.
    CrossRef  |  
  94. Ponalagusamy, R., E. Kannan and M. Arock, 2007. On huffman decoding: A parallel algorithm on a linear array with a reconfigurable pipelined bus system. Int. J. Comput. Math. Sci. Appl., 1: 443-450.
  95. Ponalagusamy, R., E. Kannan and M. Arock, 2007. A huffman decoding algorithm in mobile robot platform. Inform. Technol. J., 6: 776-779.
    CrossRef  |  Direct Link  |  
  96. Ponalagusamy, R., 2007. Blood flow through an artery with mild stenosis: A two-layered model, different shapes of stenoses and slip velocity at the wall. J. Applied Sci., 7: 1071-1077.
    CrossRef  |  Direct Link  |  
  97. Ponalagusamy, R. and S. Senthilkumar, 2007. A Comparison of RK-fourth orders of Variety of Means and embedded means on multilayer raster CNN simulation. J. Theor. Applied Inform. Technol., 3: 7-14.
    Direct Link  |  
  98. Ponalagusamy, R. and C. Saravanan, 2007. Analysis of Medical Images using Statistical Methods. Imperial College Press, UK.
  99. Arock, M. and R. Ponalagusamy, 2007. A Constant-time Selection Algorithm on an LARPBS. Imperial College Press, UK.
  100. Ponalagusamy, R., R. Narayanasamy and S. Senthilkumar, 2006. Finite element simulation for analysis of open-die forging of sintered cylindrical billets. Int. J. Manuf. Technol. Res., 2: 31-37.
  101. Narayanasamy, R., R. Ponalagusamy, R. Venkatesan and P. Srinivasan, 2006. An upper bound solution to extrusion of circular billet to circular shape through cosine dies. Mater. Design, 27: 411-415.
    CrossRef  |  
  102. Michael, A. and R. Ponalagusamy, 2006. Parallel algorithms for robot path planning with simpler VLSI architecture. Int. J. Comput. Applns. Tech., 26: 157-163.
    CrossRef  |  Direct Link  |  
  103. Arock, M. and R. Ponalagusamy, 2006. Parallel agorithms for robot path planning with simple VLSI architecture. Int. J. Comput. Appl. Technol., 26: 157-168.
    Direct Link  |  
  104. Ponalagusamy, R., R. Narayanasamy and P. Srinivasan, 2005. Design and development of streamlined extrusion dies-a bezier curve approach. J. Mat. Process. Technol., 161: 375-380.
    CrossRef  |  
  105. Narayanasamy, R., R. Venkatesan and R. Ponalagusamy, 2005. Extrusion die profile and extrusion pressure optimization using genetic algorithm. J. Inst. Eng. Singapore, 45: 52-63.
  106. Kannan, E., R. Ponalagusamy and M. Arock, 2005. A parallel algorithms for APSL problem on strongly chordal graphs. AMSE J., 10: 13-24.
  107. Kannan, E., M. Arock and R. Ponalagusamy, 2003. A Parallel Huffman Decoding Algorithm. In: Algorithms and Artificial Systems, Thangavel, P. (Ed.). Allied Publishers (Pvt.) Limited, New Delhi, India, pp: 17-23.
  108. Ponalagusamy, R., R. Narayanasamy and S. Raghuraman, 2001. The effect of strain rate sensitivity on theoretical limiting draw ratio for cup drawing process. Metals Mater. Process., 13: 49-49.
  109. Ponalagusamy, R., K. Murugesan D. Paul Dhayabaran and E.C. Henry Amirtharaj, 2001. Numerical solution of heat-flow problem by a combined method of rayleigh ritz with STWS and RKHM. Adv. Model. Anal. J., 38: 29-47.
  110. Narayanasamy, R., R. Ponalagusamy and K.R. Subramanian, 2001. Generalized theory of porous sintered P/M metals. J. Mater. Process. Technol., 110: 182-182.
  111. Narayanasamy, R., S. Sathiyanarayanan and R. Ponalagusamy, 2000. Uniaxial tensile behaviour of ZM-21 magnesium alloy at room temperature. J. Mater. Process. Technol., 102: 56-58.
    CrossRef  |  
  112. Narayanasamy, R., S. Sathiyanarayanan and R. Ponalagusamy, 2000. A study on barrelling in magnesium alloy solid cylinders during cold upset forming. J. Mater. Process. Technol., 101: 64-69.
    CrossRef  |  
  113. Narayanasamy, R., R. Ponalagusamy and S. Raghuraman, 2000. Theoretical prediction of limiting draw ratio for cup drawing process. J. Metals Mater. Process., 12: 337-350.
  114. Narayanasamy, R. and R. Ponalagusamy, 2000. A mathematical theory of plasticity for the upsetting of compressible P/M materials. J. Mater. Process. Technol., 97: 107-109.
    CrossRef  |  
  115. Narayanasamy, R. and R. Ponalagusamy, 2000. A mathematical theory of plasticity for compressible powder metallurgy materials-Part III. J. Mater. Process. Technol., 100: 262-265.
    CrossRef  |  
  116. Narayanasamy, R. and R. Ponalagusamy, 2000. A mathematical theory of plasticity for compressible powder metallurgy materials-Part II. J. Mater. Process. Technol., 97: 110-113.
    CrossRef  |  
  117. Narayanasamy, R. and R. Ponalagusamy, 1999. A mathematical theory of plasticity for compressible P/M materials. J. Mater. Process. Technol., 86: 159-162.
    Direct Link  |  
  118. Ponalagusamy, R., C. Ohkubo and M. Asano, 1997. Numerical analysis on effect of non-newtonian behaviour of blood on optimal geometry of microvascular bifurcation. Medical and Technical Report No. 24, The Institute of Public Health, Tokyo, Japan, pp: 45..
  119. Ponalagusamy, R. and N.P. Gopalan, 1993. Numerical study on steady state, three dimensional atmospheric diffusion of sulphur dioxide and sulphate dispersion with non-linear kinetics. Int. J. Comput. Fluid Dyn., 1: 339-350.
    CrossRef  |  
  120. Ponalagusamy, R., 1992. Effect of non-newtonian behaviour of blood on optimal geometry of vascular bifurcation. Biorheology, 29: 66-66.
  121. Gopalan, N.P. and R. Ponalagusamy, 1992. Investigation on laminar flow of a suspension in corrugated straight tubes. Int. J. Eng. Sci., 30: 631-643.
    CrossRef  |  
  122. Ponalagusamy, R. and M. Kawahara, 1989. A finite element analysis of laminar unsteady flows of viscoelastic fluids through channels with non-uniform cross-sections. Int. J. Numerical Methods Fluids, 9: 1487-1501.
    CrossRef  |  
  123. Ponalagusamy, R., 1986. Peristaltic flow of generalized visco-plastic fluids in tubes with varying cross-sections and its implications. Biorheology, 23: 223-223.
  124. Ponalagusamy, R., 1986. Effects of peripheral plasma layer, size and shape of stenosis and blood rheology on flow through an artery. Biorheology, 23: 222-222.
  125. Chaturani, P. and R. Ponnalagarsamy, 1986. Pulsatile flow of casson's fluid through stenosed arteries with applications to blood flow. Biorheology, 23: 499-511.
    PubMed  |  
  126. Chaturani, P. and R. Ponnalagarsamy, 1986. A two layered model for blood flow through stenosed arteries with axially variable slip velocity at the wall. Biorheology, 23: 218-218.
  127. Chaturani, P. and R. Ponnalagarsamy, 1985. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology, 22: 521-531.
    PubMed  |