Dr. Minaxi Samatbhai Maru
My Social Links

Dr. Minaxi Samatbhai Maru

Assistant Professor
Department of Chemistry, Jawaharlal Nehru Engineering College, Mahatma Gandhi Mission University, Aurangabad, Maharashtra, India


Highest Degree
PostDoc Fellow in Inorganic Chemistry from Instituto Superior Tecnico, Portugal

Share this Profile

Area of Interest:

Chemistry
100%
Inorganic Chemistry
62%
Coordination Chemistry
90%
Catalysis
75%
Organic Chemistry
55%

Research Publications in Numbers

Books
0
Chapters
7
Articles
29
Abstracts
1

Selected Publications

  1. Maru, M.S., D. Kim, J. Behal and O.S. Jung, 2022. Microwave irradiated solid phase and catalyst-free hantzsch 1,4-dihydropyridine synthesis: Spectral characterization, fluorescence study, and molecular crystal structure. Curr. Chin. Chem., Vol. 2. 10.2174/2666001601666210506151517.
    CrossRef  |  Direct Link  |  
  2. Behal, J., M.S. Maru, P. Patel and R. Saini, 2022. Catalytic sulfoxidation of sulphide to sulfoxide over cobalt and iron doped chromium oxide nanoparticle catalyst. Mater. Today: Proceed., 58: 638-641.
    CrossRef  |  Direct Link  |  
  3. Maru, M.S., S. Ram, N.U.H. Khan and R.S. Shukla, 2021. A ruthenium-inserted hydrotalcite (Ru-HT) heterogeneous catalyst: Kinetic studies on the selective hydrogenation of carbon dioxide to formic acid. Mater. Adv., 2: 5443-5452.
    CrossRef  |  Direct Link  |  
  4. Maru, M.S., P. Patel, N.U.H. Khan and R.S. Shukla, 2020. Copper hydrotalcite (Cu-HT) as an efficient catalyst for the hydrogenation of CO2 to formic acid. Curr. Catal., 9: 59-71.
    CrossRef  |  Direct Link  |  
  5. Maru, M.S., P.K.S. Antharjanam and N.U.H. Khan, 2019. Catalyst-free solid phase microwave-assisted synthesis of 1,4-dihydropyridine derivatives and their single crystal structure determination. ChemistrySelect, 4: 774-782.
    CrossRef  |  Direct Link  |  
  6. Patel, P., S. Nandi, M.S. Maru, R.I. Kureshy and N.U.H. Khan, 2018. Nitrogen-rich graphitic carbon stabilized cobalt nanoparticles as an effective heterogeneous catalyst for hydrogenation of CO2 to formate. J. CO2 Util., 25: 310-314.
    CrossRef  |  Direct Link  |  
  7. Maru, M.S., S. Ram, R.S. Shukla and N.U.H. Khan, 2018. Ruthenium-hydrotalcite (Ru-HT) as an effective heterogeneous catalyst for the selective hydrogenation of CO2 to formic acid. Mol. Catal., 446: 23-30.
    CrossRef  |  Direct Link  |  
  8. Maru, M.S., S. Barroso, P. AdÂo, L.G. Alves and A.M. Martins, 2018. New salan and salen vanadium complexes: Syntheses and application in sulfoxidation catalysis. J. Organomet. Chem., 870: 136-144.
    CrossRef  |  Direct Link  |  
  9. Maru, M.S., S. Ram, J.H. Adwani and R.S. Shukla, 2017. Selective and direct hydrogenation of CO2
    for the synthesis of formic acid over a rhodium hydrotalcite (Rh-HT) catalyst. ChemistrySelect, 2: 3823-3830.
    CrossRef  |  Direct Link  |  
  10. Menapara, T., M.S. Maru, N.H. Khan and R.I. Kureshy, 2016. Preparation of epoxide using urea based solid amide catalyst. Int. J. Res. Sci. Innovat., 4: 398-403.
  11. Maru, M.S., 2016. Microwave assisted solid phase catalyst-free Biginelli synthesis of 3, 4-dihydropyrimidin-2 (1H)-one and 3, 4-dihydropyrimidin-2 (1H)-thione: A green approach, characterization and molecular crystal structures. Mol. Crystals Liquid Crystals, 641: 53-62.
    CrossRef  |  Direct Link  |  
  12. Maru, M.S. and M.K. Shah, 2015. Synthesis, characterization and biological evaluation of mononuclear dichloro-bis [2-(2-chloro-6, 7-substituted Quinolin-3-yl)-1H-benzo [d] imidazole] Co (II) complexes. Orbital Electron. J. Chem., 7: 108-121.
    CrossRef  |  Direct Link  |  
  13. Maru, M.S. and M.K. Shah, 2015. Synthesis, characterization and antimicrobial evaluation of transition metal complexes of monodentate 2-(substituted phenyl)-1H-benzo[d]imidazoles. Chiang Mai J. Sci., 42: 216-227.
    Direct Link  |  
  14. Maru, M.S. and M.K. Shah, 2015. A novel 4-(4, 5-dimethoxy-2-nitrophenyl)-2, 6-dimethyl-3, 5-dicarbethoxy-1, 4-dihydropyridine (C21H26N2O8): Microwave-irradiated hantzsch ester synthesis, characterization and molecular crystal. Mol. Crystals Liquid Crystals, 623: 217-225.
    CrossRef  |  Direct Link  |  
  15. Maru, M.S. and M.K. Shah, 2014. Cu (II) and Ni (II) complexes of novel three 2-{1-Phenyl-3-(4-halophenyl)-1H-pyrazole-4-yl}-1H-benzimidazoles: Synthesis and structural depiction. Synthe. React. Inorg. Metal Organ. Nano-Metal Chem., 44: 912-919.
    CrossRef  |  Direct Link  |  
  16. Bhalu, A., K. Vilapara, M. Maru and M. Shah, 2014. Synthesis and characterization of Cu (II), Ni (II) and Co (II) based schiff base complexes. Int. Lett. Chem. Phys. Astron., 12: 51-55.
  17. Maru, M.S. and M.K. Shah, 2013. Synthesis and molecular crystal structure of 4-(4, 5-dimethoxy-2-nitrophenyl)-2, 6-dimethyl-3, 5-dicarbmethoxy-1, 4-dihydropyridine (C19H22N2O8). Mol. Crystals Liquid Crystals, 574: 117-128.
    CrossRef  |  Direct Link  |  
  18. Maru, M. and M.K.Shah, 2012. Synthesis, characterization and antimicrobial evaluation of novel 2-(1, 3-substituted 1H-pyrazol-4-yl)-1H-benzo[d]thiazoles. Int. J. Chem. Pharmaceut. Sci., 3: 61-64.
  19. Maru, M. and M.K. Shah, 2012. Transition metal complexes of 2-(substituted-1H-pyrazole-4-yl)-1H-benzo[d]imidazoles: Synthesis and characterization. J. Chem. Pharmaceut. Res., 4: 1638-1643.
  20. Maru, M. and M.K. Shah, 2012. Synthesis, physico-chemical studies and antimicrobial evaluation of novel 2-(substituted aryl)-1H-benzo[d]thiazoles and their metal(II)chloride complexes. Int. J. Pharm. Pharmaceut. Sci., 4: 388-391.
  21. Maru, M. and M.K. Shah, 2012. Synthesis and physico-chemical studies of some divalent transition metal complexes of 2-(2-chloro-6-substituted quinolinyl)-1H-benzo[d]imidazole ligands. Int. J. Chem. Sci. Res., 2: 14-27.
  22. Maru, M. and M.K. Shah, 2012. Syntheses and spectral characterization of some novel 1H-benzothiazole derivatives and their Cu(II) complexes. Der Chemica Sinica, 3: 481-485.
    Direct Link  |  
  23. Maru, M. and M.K. Shah, 2009. A simple and one-pot three-component synthesis of 1,4-dihydropyridines. Organ. Chem. Indian J., 5: 360-362.