Dr. Sher Afghan Khan

Dr. Sher Afghan Khan

Research Director/VP of Research
Pace College of Engineering, India


Highest Degree
Ph.D. in Gas Dynamics from Indian Institute of Technology, India

Share this Profile

Area of Interest:

Physical Science Engineering
100%
Fluid Mechanics
62%
Gas Dynamics
90%
High Speed Aerodynamics
75%
Drag Reduction Techniques
55%

Selected Publications

  1. Shabana, A., R.S. Monis, A. Crasta and S.A. Khan, 2018. Estimation of stability derivatives in newtonian limit for oscillating cone. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012061.
    CrossRef  |  Direct Link  |  
  2. Shabana, A., R.S. Monis, A. Crasta and S.A. Khan, 2018. Computation of stability derivatives of an oscillating cone for specific heat ratio = 1.66. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012059.
    CrossRef  |  Direct Link  |  
  3. Sethuraman, V. and S.A. Khan, 2018. Base pressure control using micro-jets in supersonic flow regimes. Int. J. Aviation Aeronautics Aerospace, 5: 1-24.
  4. Saleel, A., M.A.A. Baig and S.A. Khan, 2018. Experimental investigation of the base flow and base pressure of sudden expansion nozzle. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012052.
    CrossRef  |  Direct Link  |  
  5. Rashid, M.A.N., S.A. Khan, M.K.N. Khairusshima and N. Sarifuddin, 2018. Study on tool wear and tool life during milling JFRP using uncoated carbide cutting tool. ARPN J. Eng. Applied Sci., 13: 2930-2934.
    Direct Link  |  
  6. Quadros, J.D., S.A. Khan, and A.J. Antony, 2018. Effect of flow parameters on base pressure in a suddenly expanded duct at supersonic mach number regimes using CFD and design of experiments. J. Applied Fluid Mech., 11: 483-496.
  7. Quadros, J.D., S.A. Khan and A.J. Antony, 2018. Modelling of suddenly expanded flow process in supersonic mach regime using design of experiments and response surface methodology. Int. J. Comput. Applied Mech., 49: 149-160.
  8. Pavitra, S., S. Lavanya and S.A. Khan, 2018. Stability derivatives of a oscillating wedges in viscous hypersonic flow. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012051.
    CrossRef  |  Direct Link  |  
  9. Khan, S.A., M.A. Fatehpurwala, K.N. Pathan, P.S. Dabeer and M.A.A. Baig, 2018. CFD analysis of human powered submarine to minimize drag. Int. J. Mech. Mechatronics Eng., 18: 1057-1066.
  10. Khan, S.A., M. Asadullah and J. Sadhiq, 2018. Passive control of base drag employing dimple in subsonic suddenly expanded flow. Int. J. Mech. Mechatronics Eng., 18: 69-74.
  11. Khan, S.A., M. Asad Ullah, F. Ahmed, A. Jalaluddin and M.A.A. Baig, 2018. Passive control of base drag in compressible sonic flow using multiple cavity. Int. J. Mech. Prod. Eng. Res. Dev., 8: 39-44.
  12. Khan, S.A., M. Asad Ullah, F. Ahmed, A. Jalaluddin and M.A.A. Baig, 2018. Flow control with aero-spike behind bluff body. Int. J. Mech. Mechatronics Eng., 18: 1001-1008.
  13. Khan, S.A., Abdul Aabid and M.A.A. Baig, 2018. Design and fabrication of unmanned arial vehicle for multi-mission tasks. Int. J. Mech. Prod. Eng. Res. Dev., 8: 474-485.
  14. Khan, S.A., Abdul Aabid and M.A.A. Baig, 2018. CFD analysis of CD nozzle and effect of nozzle pressure ratio on pressure and velocity for suddenly expanded flows. Int. J. Mech. Mechatronics Eng., 18: 1147-1158.
  15. Bashir, M., P. Rajendran and S.A. Khan, 2018. Energy harvesting from aerodynamic instabilities: Current prospect and future trends. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 290. 10.1088/1757-899X/290/1/012054.
    CrossRef  |  Direct Link  |  
  16. Asadullah, M., S.A. Khan, W. Asrar and E. Sulaeman, 2018. Passive control of base pressure with static cylinder at supersonic flow. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012050.
    CrossRef  |  Direct Link  |  
  17. Asadullah, M., S.A. Khan, W. Asrar and E. Sulaeman, 2018. Low-cost base drag reduction technique. Int. J. Mech. Eng. Robotics Res., 7: 428-432.
    Direct Link  |  
  18. Asadullah, M., S.A. Khan, W. Asrar and E. Sulaeman, 2018. Counter clockwise rotation of cylinder with variable position to control base flows. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012058.
    CrossRef  |  Direct Link  |  
  19. Ahmed, F. and S.A. Khan, 2018. Investigation of efficacy of low length-to-diameter ratio and nozzle pressure ratio on base pressure in an abruptly expanded flow. MATEC Web Conf., Vol. 172. .
    Direct Link  |  
  20. Abdul Aabid and S.A. Khan, 2018. Optimization of heat transfer on thermal barrier coated gas turbine blade. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012022.
    CrossRef  |  Direct Link  |  
  21. Abdul Aabid and S. A. Khan, 2018. Design and fabrication of flying saucer utilizing coanda effect. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 370. 10.1088/1757-899X/370/1/012060.
    CrossRef  |  Direct Link  |  
  22. Yashodhar, V., G.M.H. Kaushik and S.A. Khan, 2017. CFD studies on triangular micro-vortex generators in flow control. IOP Conf. Series Mater. Sci. Eng., .
    Direct Link  |  
  23. Shabana, A., R.S. Monis, A. Crasta and S.A. Khan, 2017. Estimation of stability derivative of an oscillating cone in hypersonic flow. Int. J. Recent Res. Aspects, 4: 46-52.
  24. Quadros, J.D., S.A. Khan and A.J. Antony, 2017. Predictive modeling of suddenly expanded flow process in the supersonic mach number regime using response surface methodology. Int. J. Recent Res. Aspects, 4: 53-58.
  25. Pavitra, S., S. Lavanya and S.A. Khan, 2017. Estimation of stability derivatives of a wedges at supersonic mach numbers. Int. J. Recent Res. Aspects, 4: 64-68.
  26. Monis, R.S., A. Shabana , A. Crasta and S.A. Khan, 2017. Computation of stiffness derivative for an unsteady delta wing with curved leading edges. Int. J. Recent Res. Aspects, 4: 69-72.
  27. Khan, S.A. and M.A. Ullah, 2017. Estimation of stability derivatives in pitch for an oscillating wedge in hypersonic flow. IOP Conf. Ser. Mate. Sci. Eng., 10.1088/1757-899X/184/1/012003.
    CrossRef  |  Direct Link  |  
  28. Bashir, M. and S.A. Khan, 2017. Investigation on the prominence of abrupt expansion on the base pressure of an axi-symmetric body. Int. J. Recent Res. Aspects, 4: 59-63.
  29. Bahir, M., S.A. Khan, Q. Azam and A.A. Janvekar, 2017. Computational and analytical investigation of aerodynamic derivatives of similitude delta wing model at hypersonic speeds. Int. J. Technol., 8: 37-46.
    CrossRef  |  Direct Link  |  
  30. Afzal, A., M. Samee and S.A. Khan, 2017. Comparative heat transfer analysis in different mini-channel heat sinks. Int. J. Recent Res. Aspects 4: 41-45.
  31. Ullah, M.A., S.A. Khan and S. Ashfaq, 2016. Estimation of Aerodynamic Derivatives of A Wedge in Hypersonic Flow. Int. Eng. Res. J., 9: 380-383.
    CrossRef  |  Direct Link  |  
  32. Ullah, M.A., M. Bashir, A. Janvekar and S.A. Khan, 2016. Control of ideally expanded and under expanded nozzles flows with micro jets. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 90-98.
  33. Shabana, A., R. Monis, A. Crasta and S.A. Khan, 2016. 2016Pressure and its derivative with respect to piston mach number for an oscillating cone. Int. Organ. Sci. Res. J. Mech. Civil Eng., 2: 74-78.
  34. Sethuraman, V. and S.A. Khan, 2016. Effect of sudden expansion for varied area ratios at subsonic and sonic flow regimes. Int. J. Energy, Environ. Econ., 24: 99-111.
    Direct Link  |  
  35. Quadros, J.D., S.A. Khan, A.J. Antony and J.S. Vas, 2016. Experimental and numerical studies on flow from axisymmetric nozzle flow with sudden expansion for Mach 3.0 using CFD. Int. J. Energy, Environ. Econ., 24: 87-97.
  36. Quadros, J.D., S.A. Khan and A.J. Antony, 2016. Investigation of effect of process parameters on suddenly expanded flows through an axi-symmetric nozzle for different mach numbers using design of experiments. IOP Conf. Ser. Mater. Sci. Eng., .
    Direct Link  |  
  37. Pavitra, S., S. Lavanya and S.A. Khan, 2016. Effect of Inertia Level on Aerodynamic Derivatives of a wedge in Hypersonic Flow. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 72-75.
  38. Pavithra, S., S. Lavanya, S.A. Khan and A. Crasta, 2016. Estimation of Aerodynamic Derivatives in Pitch of A Wedge in Hypersonic Flow. Indian J. Sci. Technol., 9: 1-4.
    CrossRef  |  Direct Link  |  
  39. Pavithra, S., M. Bashir, S. Lavanya and S.A. Khan, 2016. Estimation of stability derivatives in pitch for an oscillating 2-d wedge in supersonic flow. Int. J. Adv. Appl. Fluid Mech., 19: 873-882.
  40. Monis, R.S., A. Shabana, A. Crasta and S.A. Khan, 2016. Supersonic flow analysis and evaluation of damping derivative. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 29-36.
  41. Khan, S.A., M. Bashir, G.M.F. Ahmed and M.A. Ullah, 2016. An investigation of base flow control by wall pressure analysis in a suddenly expansion nozzle. Int. J. Sci. Res. Dev., 3: 1-6.
    Direct Link  |  
  42. Crasta, A., S. Pavithra and S.A. Khan, 2016. Estimation of pressure distribution on a delta wing with curved leading edges in hypersonic/supersonic flow. Int. J. Energy Environ. Econ., 24: 67-73.
  43. Crasta, A., A. Shabana, R. Monis and S.A. Khan, 2016. Analysis of variation of stiffness derivative with mach number and angle of attack for a supersonic flow. Int. Organ. Sci. Res. J. Mech. Civil Eng., 2: 97-104.
  44. Crasta, A. and S.A. Khan, 2016. Effect of Aspect Ratio With Roll Moment Derivative of A Delta Wing. Int. J. Appl. Eng. Res., 12: 10-15.
  45. Chaudhary, Z.I., V.B. Shinde, M. Bashir and S.A. Khan, 2016. Experimental studies of the base flow from the nozzles with sudden expansion with micro jets. Int. J. Energy, Environ. Econ., 24: 59-66.
  46. Chaudhary, Z.I., V.B. Shinde and S.A. Khan, 2016. Experimental Investigation on the Effectiveness of Active Control Mechanism on Base Pressure at Low Supersonic Mach Number. In: Innovative Design and Development Practices in Aerospace and Automotive Engineering. Bajpai, R.P. and U. Chandrasekhar, (Ed.). Springer, Malaysia, pp 197-209.
    CrossRef  |  Direct Link  |  
  47. Bashir, M.M., A.A. Baig, A.F. Ismail and S.A. Khan, 2016. Control of suddenly expanded flows from correctly expanded and under expanded nozzles at supersonic mach number for area ratio 2.56. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 76-82.
  48. Bashir, M., Q. Azam, S A. Khan and M.A.A. Baig, 2016. Control of wall pressure flow field with miro jets and control effectiveness. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 99-107.
  49. Baig, M.A.A. and S.A. Khan, 2016. High speed trains: A review. Int. Organ. Sci. Res. –J. Mech. Civil Eng., 4: 104-109.
  50. Ali, S.M.M., W.F. Faris, A.F. Ismail and S.A. Khan, 2016. Thermal performance of fined plate mini-channel heat sink. Int. Organ. Sci. Res. J. Mech. Civil Eng., 4: 01-04.
  51. Ahmed, P.K., P.S. Dabeer and S.A. Khan, 2016. CFD Analysis of the supersonic nozzle flow with sudden expansion. Int. Organ. Sci. Res. J. Mechan. Civil Eng., 4: 05-07.
  52. Ahmed, F.G.M., M.A.A. Baig, M. Bashir and S.A. Khan, 2016. Control of ideally expanded and under expanded nozzles flows with micro jets. Int. Organ. Sci. Res. J. Mech. Civil Eng., 3: 83-89.
  53. Ahmed G.M.F., M.A. Ullah and S.A. Khan, 2016. Exprimental Study Suddenly Expanded Flow from Correctly Expznded Nozzles. ARPN J. Eng. Appl. Sci., 11: 10041-10047.
  54. Afzal, A., M.A.A. Baig, S.A. Khan and S. Rahim, 2016. Structural analysis of vee-cap sheet metal component. Int. Organ. Sci. Res. J. Mech. Civil Eng., 2: 79-83.
  55. Ilahi, Z., V.B. Shinde, S. Ashfaq and S.A. Khan, 2015. Effect of High L/D Ratio and Nozzle Pressure Ratio (NPR) in a Suddenly Expande Flow. Int. J. Bus. Quantative Econ. Appl. Manage. Res., 1: 66-70.
    Direct Link  |  
  56. Ilahi, Z., V.B. Shinde, S. Ashfaq and S.A. Khan, 2015. Control of Suddenly Expanded Flow at Low Supersonic Mach Number. Int. J. Eng. Res. Appli., 5: 24-33.
    Direct Link  |  
  57. Ilahi, Z., V.B. Shinde, M. Bashir and S.A. Khan, 2015. Experimental investigation of the base flow from the nozzles with sudden expansion. Int. J. Appl. Eng. Res., 10: 208-211.
  58. Ilahi, Z., V.B. Shinde and S.A. Khan, 2015. Effectiveness of Micro Jets at Different Level of Expansion. J. Mech. Civil Eng., 12: 29-34.
    CrossRef  |  
  59. Crasta, A. and S.A. Khan, 2015. Estimation of Damping Derivatives of a Delta wing with Half Sine wave Curved Leading Edge. Int. Organiz. Sci. Res. J. Mech. Civil Eng., 12: 40-44.
    CrossRef  |  Direct Link  |  
  60. Crasta, A. and S.A. Khan, 2015. Estimation of Damping Derivatives in Pitch of a Supersonic Delta Wing With Curved Leading Edges. Int. Organiz. Sci. Res. J. Math., 11: 7-15.
    Direct Link  |  
  61. Crasta, A. and S.A. Khan, 2015. Effect of Angle of Attack on Damping Derivatives of Delta Wing With Full Sine Wave Curved Leading Edge. Int. J. Emerging Trends Eng. Dev., 5: 237-245.
  62. Ashfaq, S. and S.A. Khan, 2015. Combined Effect of Relief and Level of Expansion in a Suddenly Expanded Flow. J. Mech. Civil Eng., 12: 52-59.
    CrossRef  |  
  63. Crasta, A. and S.A. Khan, 2014. Hypersonic Similitude for Planar Wedges. Int. J. Adv. Res. Eng. Technol., 5: 16-31.
  64. Crasta, A. and S.A. Khan, 2014. Estimation Stability Derivatives for a Planar Wedge in the Newtonian Limit. Int. Organiz. Sci. Res. J. Math., 10: 1-6.
  65. Crasta, A. and S.A. Khan, 2014. Effect of Sweep Angle on Rolling Moment Derivatives of an Oscillating Supersonic/Hpersonic Delta wing. Int. J. Mod. Eng. Res., 4: 15-22.
  66. Crasta, A. and S.A. Khan, 2014. Effect of Sweep Angle of on Roll Damping Derivatives of a Delta Wing. Int. J. Emerging Trends Eng. Dev., 5: 44-55.
  67. Crasta, A. and S.A. Khan, 2014. Effect of Angle of attack on Stability Derivatives of a Delta Wing in Hypersonic Flow with Straight Leading Edge. J. Mech. Civil Eng., 11: 21-29.
    CrossRef  |  
  68. Crasta, A. and S.A. Khan, 2014. Effect of Angle of Incidence on Roll Damping Derivatives of a Delta Wing. Int. J. Emerging Trends Eng. Dev., 4: 343-356.
    Direct Link  |  
  69. Crasta, A. and S.A. Khan, 2014. Effect of Angle of Incedence on Stiffness and Damping Derivatives for Oscillating Hypersonic Non-Planar Wedge. Int. J. Res. Appl. Sci. Eng. Technol., 2: 229-242.
    Direct Link  |  
  70. Crasta, A. and S.A. Khan, 2014. Effect of Angle of Incedence on Stability Derivatives of a Wing. Int. J. Res. Appl. Sci. Eng. Technol., 2: 411-422.
  71. Crasta, A. and S.A. Khan, 2014. Effect of Angle of Attack on Stiffness Derivatives of an Oscillating Supersonic Delta wing with Curved Leading Edges. Int. Organiz. Sci. Res. J. Mech. Civil Eng., 11: 12-25.
    CrossRef  |  Direct Link  |  
  72. Crasta, A. and S.A. Khan, 2014. Effect of Angle of Attack on Stability Derivatives of a Delta wing with Straight Leading Edge. Int. Organiz. Sci. Res. J. Math., 10: 1-8.
    CrossRef  |  
  73. Crasta, A. and S.A. Khan, 2014. Supersonic Similitude for oscillating Non-Planar Wedge. Int. Organiz. Sci. Res. J. Math., 10: 15-24.
    CrossRef  |  
  74. Crasta, A. and S.A. Khan, 2014. Effect of Mach number on Stiffness and Damping Derivatives for Oscillating Hypersonic Non-Planar Wed. Int. Organiz. Sci. Res. J. Mech. Civil Eng., 11: 4-11.
  75. Ashfaq, S. and S.A. Khan, 2014. The Effect of Micro Jets on Wall Presssure for Sonic under expanded Flow. Int. J. Eng. Res. Appli., 4: 19-29.
    Direct Link  |  
  76. Ashfaq, S. and S.A. Khan, 2014. Studies on Wall Pressure of Sonic Flow through the Converging Nozzles for Different Area Ratios. Int. J. Emerging Trends Eng. Dev., 2: 125-137.
  77. Ashfaq, S. and S.A. Khan, 2014. Studies on Wall Pressure Flow Control by Micro Jets for High Area Ratio. Int. J. Eng. Adv. Technol., 1: 664-672.
    Direct Link  |  
  78. Ashfaq, S. and S.A. Khan, 2014. Influence of Micro jets on Wall Pressure for Area Ratio 3.24. Int. J. Emerging Technol. Adv. Eng., 4: 872-880.
  79. Ashfaq, S. and S.A. Khan, 2014. Experimental Studies on Low Speed Converging Nozzle Flow with Sudden Expansion. Int. J. Emerging Technol. Adv. Eng., 4: 532-540.
    Direct Link  |  
  80. Ashfaq, S. and S.A. Khan, 2014. Experimental Investigation of Flow Through Convergent Nozzle and the Influence of Micro Jets on the Enlarged Duct Flow Field. Int. J. Mech. Eng., 2: 7-14.
  81. Ashfaq, S. and S.A. Khan, 2014. Effect of Mach Number on Wall Pressure Flow Field for Area Ratio 2.56. Int. Organiz. Sci. Res. J. Mech. Civil Eng., 11: 56-64.
  82. Ashfaq, S. and S.A. Khan and E. Rathakrishnan, 2014. Control of Base Pressure with Micro Jets for Area Ratio 2.4. Int. Rev. Mech. Eng., 8: 1-10.
    Direct Link  |  
  83. Sayyed, F.B. and S.A. Khan, 2013. Approximate analytical method for damage detection in free–free beam by measurement of axial vibrations. Int. J. Damage Mech., 22: 133-142.
    CrossRef  |  Direct Link  |  
  84. Crasta, A. and S.A. Khan, 2013. Stabilty Derivatives in the Newtonian Limit. Int. J. Adv. Res. Eng. Technol., 4: 276-289.
  85. Crasta, A. and S.A. Khan, 2013. Stability Derivatives of a Delta Wing With Straight Leading Edge in The Newtonian Limit. Int. J. Eng. Res. Appli., 4: 1482-1488.
  86. Crasta, A. and S.A. Khan, 2013. Determination of Surface Pressure of an Axisymmetric ogive in Hypersonic Flow. Math. Sci. Int. Res. J., 2: 333-335.
  87. Ashfaq, S., S.A. Khan and E. Rathakrishnan, 2013. Control of Suddenly Expanded Flow for Area Ratio 3.61. Int. J. Adv. Sci. Tech. Res., 6: 1-11.
    Direct Link  |  
  88. Ashfaq, S., S.A. Khan and E. Rathakrishnan, 2013. Active Control of Flow through the Nozzles at Sonic Mach Number. Int. J. Emerging Trends Eng. Dev., 2: 73-82.
    Direct Link  |  
  89. Ashfaq, S. and S.A. Khan, 2013. Studies on Flow from Convergent Nozzle with Sudden Expansion and Control Effectiveness under the Influence of Micro jets. Int. J. Res. Mech. Eng. Technol., 4: 76-87.
    Direct Link  |  
  90. Ashfaq, S. and S.A. Khan, 2013. Sonic under expanded Flow Control with Micro jets. Int. J. Eng. Res. Appli., 3: 1482-1488.
    Direct Link  |  
  91. Mafeed, M.P., A.M. Salman, C. Prabin, M.K. Ramis, M.A.A. Baig and S.A. Khan, 2012. Optimum Length Design for Pin Fins Used in Electronic Cooling. Int. J. Appl. Mech. Mater., 110-116: 1667-1673.
    CrossRef  |  Direct Link  |  
  92. Khan, S.A., M.A. Baig and E. Rathakrishnan, 2012. Control of Sub-Sonic Jets with Micro jets. Int. J. Emerging Trends Eng. Dev., 5: 269-275.
  93. Hassan, N., M.A.A. Baig and S.A. Khan, 2012. Supersonic Flow Past Forward Facing Step. Int. J. Emerging Trends Eng. Dev., 5: 75-80.
  94. Crasta, A., M.A.A. Baig and S.A. Khan, 2012. Estimation of Stability Derivatives of a Delta wing in Hypersonic Flow. Int. J. Emerging Trends Eng. Dev., 6: 505-516.
    Direct Link  |  
  95. Crasta, A. and S.A. Khan, 2012. Oscillating Supersonic delta wings with Straight Leading Edges. Int. J. Comput. Eng. Res., 2: 1226-1233.
    Direct Link  |  
  96. Crasta, A. and S.A. Khan, 2012. High Incidence Supersonic Similitude for Planar Wedge. Int. J. Eng. Res. Appli., 2: 468-471.
    Direct Link  |  
  97. Crasta, A. and S.A. Khan, 2012. Estimation of Stabilty Derivatives of an Oscillating Hypersonic Delta wing with curved Leading Edges. Int. J. Mech. Eng. Technol., 3: 483-492.
    Direct Link  |  
  98. Baig, M.A.A., S.A. Khan and M.Y. Khan, 2012. Effect of Area Ratio on Base Pressure in a Suddenly Expanded Duct for Under Expanded Flow at Mach 1.87. Int. J. Mech. Ind. Eng., 2: 65-68.
    Direct Link  |  
  99. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Wall Pressure Studies in a Suddenly Expanded Flow for Area Ratio 2.56. J. Eng. Res. Appli., 2: 1566-1573.
  100. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Experimental Investigations on Wall Pressure in Suddenly Enlarged Ducts at Supersonic Mach number Regimes. Int. J. Emerging Trends Eng. Dev., 6: 496-504.
    Direct Link  |  
  101. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Effect of Mach number in a Suddenly Expanded Flow for Area Ratio 4. Int. J. Eng. Res. Appli., 2: 593-599.
  102. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Control of base flows with micro jet for area ratio of 6.25. ARPN J. Eng. Appl. Sci., 7: 992-1102.
    Direct Link  |  
  103. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Base Pressure Studies from over expanded Nozzle for Area Ratio 2.56. Int. J. Curr. Res. Rev., 4: 107-113.
  104. Baig, M.A.A., S.A. Khan and E. Rathakrishnan, 2012. Active Control of Base Pressure in Suddenly Expanded Flow for Area Ratio 4. Int. J. Eng. Sci. Technol., 4: 1892-1902.
    Direct Link  |  
  105. Baig, M.A.A. and S.A. Khan, 2012. Studies on Suddenly Expanded Flow at Different Levels of Over Expansion for Area Ratio 3.24. Int. J. Sci. Eng. Res., 3: 1-6.
    Direct Link  |  
  106. Baig, M.A., S.A. Khan and E. Rathakrishnan, 2012. Effect of Base Pressure in a Suddenly Expanded Flows with Variable Locations of Micro jets. Int. J. Curr. Res. Rev., 4: 1-8.
  107. Baig, M.A., S.A. Khan and E. Rathakrishnan, 2012. Control of Nozzle Flow in a Suddenly Expanded Duct with Micro jets. Int. J. Eng. Sci. Adv. Technol., 2: 789-795.
    Direct Link  |  
  108. Baig, M.A.A., F. Al-Mufadi, S.A. Khan and E. Rathakrishnan, 2011. Control of base flows with micro jets. Int. J. Turbo Jet Engines, 28: 59-69.
  109. Khan, S.A. and A. Crasta, 2010. Oscillating supersonic delta wing with curved laeding edges. Int. J. Adv. Stud. Contemp. Math., 20: 359-372.
  110. Rehman, S. and S.A. Khan, 2008. Control of base pressure with micro-jets part-I. Int. J. Air. Eng. Aerosp. Technol., 80: 158-164.
  111. Khan, S.A. and E. Rathakrishnan, 2006. Nozzle expansion level effect on a suddenly expanded flow. Int. J. Turbo Jet Eng. 23: 233-258.
  112. Khan, S.A. and E. Rathakrishnan, 2006. Control of suddenly expanded flow. Int. J. Aircr. Eng. Aerosp. Technol., 78: 293-309.
  113. Khan, S.A. and E. Rathakrishnan, 2006. Active control of base pressure in supersonic regime. J. Aerosp. Eng. Inst. Eng. India, 87: 1-8.
  114. Khan, S.A. and E. Rathakrishnan, 2005. Active control of suddenly expanded flow from under expanded nozzles-part-II. Inter. J. Turbo Jet Engines, 22: 163-183.
  115. Khan, S.A. and E. Rathakrishnan, 2004. Control of suddenly expanded flow from correctly expanded nozzles. Int. J. Turbo Jet Eng., 21: 255-278.
  116. Khan, S.A. and E. Rathakrishnan, 2004. Active control of suddenly expanded flow from under expanded nozzles. Int. J. Turbo Jet Engines, 21: 233-253.
  117. Khan, S.A. and E. Rathakrishnan, 2003. Control of suddenly expanded flows with micro jets. Int. J. Turbo Jet Engines, 20: 63-81.
  118. Khan, S.A. and E. Rathakrishnan, 2002. Flow and noise characteristics of suddenly expanded flows. J. Acoust. Soc. India, 30: 253-259.
  119. Khan, S.A. and E. Rathakrishnan, 2002. Active control of suddenly expanded flows from over expanded nozzles. Int. J. Turbo Jet Engines, 19: 119-126.