Dr. Surapati Pramanik
My Social Links

Dr. Surapati Pramanik

Assistant Professor
Nandalal Ghosh B.T. College, India


Highest Degree
Ph.D. in Education from University of Kalyani, West Bengal, India

Share this Profile



Advertisement
Event

Area of Interest:

Mathematics
100%
Operations Research
62%
Hybrid Neutrosophic
90%
Fuzzy Optimization
75%
Computation
55%

Research Publications in Numbers

Books
7
Chapters
31
Articles
147
Abstracts
25

Selected Publications

  1. Mandal, T., I. Maiti and S. Pramanik, 2023. A goal programming strategy for bi-level decentralised multi-objective linear programming problem with neutrosophic numbers. Int. J. Appl. Manage. Sci., 10.1504/IJAMS.2023.10053275.
    CrossRef  |  Direct Link  |  
  2. Seyedpour, S., G.A. Bonsu, C.R. Rojas-garcia, H. Kopnina and M. Jaskulak, 2022. Integrated Science 2050: Transdisciplinarity. In: Transdisciplinarity, Rezaei, N. (Ed.) Springer, Cham, Switzerland, ISBN: 978-3-030-94651-7, pp: 713-736.
    CrossRef  |  Direct Link  |  
  3. Pramanik, S., S. Das, R. Das and B.C. Tripathy, 2022. MADM Strategies Based on Arithmetic and Geometric Mean Operator Under Rough-Bipolar Neutrosophic Set Environment. In: Transactions on Rough Sets XXIII. Peters, J.F., A. Skowron, R.N. Bhaumik and S. Ramanna, (Eds.), Springer Berlin Heidelberg, pp: 60-76.
    CrossRef  |  Direct Link  |  
  4. Pramanik, S., 2022. Single-Valued Neutrosophic Set: An Overview. In: Transdisciplinarity, Rezaei, N. (Ed.), Springer International Publishing, Cham, Switzerland, ISBN: 978-3-030-94651-7, pp: 563-608.
    CrossRef  |  Direct Link  |  
  5. Pramanik, S., 2022. Interval quadripartitioned neutrosophic sets. Neutrosophic Sets Syst., 51: 146-156.
    CrossRef  |  Direct Link  |  
  6. Das, S., R. Das, S. Pramanik and B.C. Tripathy, 2022. Neutrosophic infi-semi-open set via neutrosophic infi-topological spaces. Int. J. Neutrosophic Sci., 18: 199-209.
    CrossRef  |  Direct Link  |  
  7. Das, S., R. Das and S. Pramanik, 2022. Single valued pentapartitioned neutrosophic graphs. Neutrosophic Sets Syst., 50: 225-238.
    Direct Link  |  
  8. Das, S., R. Das and S. Pramanik, 2022. Single valued bipolar pentapartitioned neutrosophic set and its application in MADM strategy. Neutrosophic Sets Syst., 49: 145-163.
    Direct Link  |  
  9. Das, S., R. Das and S. Pramanik, 2022. Neutrosophic separation axioms. Neutrosophic Sets Syst., 49: 103-110.
    Direct Link  |  
  10. Das, S., R. Das and S. Pramanik, 2022. Neutro Algebra and Neutro Group. In: Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebras, Smarandache, F. and M. Al-Tahan (Eds.), IGI Global, United States, ISBN13: 9781668434956, pp: 141-154.
    CrossRef  |  Direct Link  |  
  11. Das, S., B. Shil and S. Pramanik, 2022. HSSM- MADM strategy under SVPNS environment. Neutrosophic Sets Syst., 50: 379-392.
    Direct Link  |  
  12. Mondal, K., S. Pramanik and B.C. Giri, 2021. NN-TOPSIS strategy for MADM in neutrosophic number setting. Neutrosophic Sets Syst., 47: 65-92.
    Direct Link  |  
  13. Momtazmanesh, S., A. Saghazadeh, J.C.A. Becerra, K. Aramesh and F.J. Barba et al. 2021. International Scientific Collaboration Is Needed to Bridge Science to Society: USERN2020 Consensus Statement. SN Compr. Clin. Med. 3: 1699-1703.
    CrossRef  |  Direct Link  |  
  14. Mallick, R. and S. Pramanik, 2021. TrNN- EDAS Strategy for MADM with Entropy Weight Under Trapezoidal Neutrosophic Number Environment. In: Neutrosophic Operational Research :Methods and Applications. Smarandache, F. and M. Abdel-Basset, Springer International Publishing, Cham, 18.
    CrossRef  |  Direct Link  |  
  15. Das, S., B. Shil and S. Pramanik, 2021. SVPNS-MADM strategy based on GRA in SVPNS environment. Neutrosophic Sets Syst., 47: 50-65.
    Direct Link  |  
  16. Das, S. and S. Pramanik, 2021. Neutrosophic tri-topological space. Neutrosophic Sets Syst., 45: 366-377.
    Direct Link  |  
  17. Pramanik, S., T. Mandal, I. Maiti and S. Das 2020. Solving Multi-objective Linear Fractional Programming Problem Based on Stanojevic’s Normalization Technique Under Fuzzy Environment. IJOR 10.1504/IJOR.2020.10028794.
    CrossRef  |  Direct Link  |  
  18. Pramanik, S. and R. Mallick, 2020. Multimoora strategy for solving multiu2010attribute group decision making (magdm) in trapezoidal neutrosophic number environment. CAAI Trans. Intell. Technol., 5: 150-156.
    CrossRef  |  Direct Link  |  
  19. Pramanik, S. and R. Mallick, 2020. Extended GRA-Based MADM Strategy With Single-Valued Trapezoidal Neutrosophic Numbers. In: Neutrosophic Sets in Decision Analysis and Operations Research, Abdel-Basset, M. and F. Smarandache, IGI Global, United States, ISBN-13: 9781799825555, pp: 150-179.
    CrossRef  |  Direct Link  |  
  20. Mallick, R. and S. Pramanik 2020. Pentapartitioned Neutrosophic Set and its Propertie. NSS .
    Direct Link  |  
  21. Maiti, I., T. Mandal and S. Pramanik 2020. FGP Approach Based on Stanojevics Normalization Technique for Multi-level Multi-objective Linear Fractional Programming Problem with Fuzzy Parameters. FGP Approach Based on Stanojevics Normalization Technique for Multi-level Multi-objective Linear Fractional Programming Problem with Fuzzy Parameters. 2020 Springer International Publishing 392-402.
    CrossRef  |  Direct Link  |  
  22. K. Mondal, S. Pramanik and B.C. Giri, 2020. Some similarity measures for MADM under a complex neutrosophic set environment. In: Some similarity measures for MADM under a complex neutrosophic set environment Smarandache F. and M. Abdel-Basset, Elsevier Cambridge, Massachusetts, United States, ISBN-13: 978-0-12-819670-0, Pages: 87-116.
    CrossRef  |  Direct Link  |  
  23. Das, S. and S. Pramanik 2020. Neutrosophic Φ-Open Sets and Neutrosophic Φ-Continuous Functions. NSS 10.5281/ZENODO.4306899.
    CrossRef  |  Direct Link  |  
  24. Das, S. and S. Pramanik 2020. Neutrosophic Simply Soft Open Set in Neutrosophic Soft Topological Space. NSS 10.5281/zenodo.4300505.
    CrossRef  |  Direct Link  |  
  25. Das, S. and S. Pramanik 2020. Generalized Neutrosophic B-Open Sets in Neutrosophic Topological Space. NSS 10.5281/zenodo.3951716.
    CrossRef  |  Direct Link  |  
  26. Mondal, K., S. Pramanik and B.C. Giri, 2019. Rough Neutrosophic Aggregation Operators for Multi-criteria Decision-Making. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, : Kahraman, C. and I. Otay (Eds.). Springer, Cham, ISBN: 978-3-030-00044-8, pp: 79-105.
  27. Maiti, I., T. Mandal and S. Pramanik 2019. Neutrosophic Goal Programming Strategy for Multi-level Multi-objective Linear Programming Problem. J. Ambient Intell. Human Comput. 11: 3175-3186.
    CrossRef  |  Direct Link  |  
  28. Biswas, P., S. Pramanik and B.C. Giri, 2019. Neutrosophic TOPSIS with Group Decision Making. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, Kahraman, C. and İ. Otay (Eds.). Springer, Cham, ISBN: 978-3-030-00044-8, pp: 543-585.
  29. Biswas, P., S. Pramanik and B.C. Giri, 2019. NH-MADM strategy in neutrosophic hesitant fuzzy set environment based on extended GRA. Informatica, 30: 213-242.
    CrossRef  |  Direct Link  |  
  30. 1. Biswas, P., S. Pramanik and B.C. Giri. 2019. Non-linear programming approach for single-valued neutrosophic topsis method. New Math. Nat. Comput., 10.1142/S1793005719500169.
    CrossRef  |  Direct Link  |  
  31. Pramanik, S., S. Dalapati, S. Alam, S. Smarandache and T.K. Roy, 2018. NC-cross entropy based MADM strategy in neutrosophic cubic set environment. Mathematics, 10.3390/math6050067.
    CrossRef  |  Direct Link  |  
  32. Pramanik, S., S. Dalapati, S. Alam, F. Smarandache and T.K. Roy, 2018. NS-cross entropy-based MAGDM under single-valued neutrosophic set environment. Information, Vol 9 10.3390/info9020037.
    CrossRef  |  Direct Link  |  
  33. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. VIKOR based MAGDM strategy under bipolar neutrosophic set environment. Neutros. Sets Syst., 19: 57-69.
    CrossRef  |  Direct Link  |  
  34. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. TODIM method for group decision making under bipolar neutrosophic set environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol.2 Pons Editions, Brussels, pp: 140-155.
  35. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. NC-VIKOR based MAGDM strategy under neutrosophic cubic set environment. Neutr. Sets Syst., 20: 95-108.
    Direct Link  |  
  36. Pramanik, S., R. Roy, T.K. Roy and F. Smarandache, 2018. Multi-attribute decision making based on several trigonometric hamming similarity measures under interval rough neutrosophic environment. Neutros. Sets Syst., 19: 110-118.
    CrossRef  |  Direct Link  |  
  37. Pramanik, S., R. Roy and T.K. Roy, 2018. Multi criteria decision making based on projection and bidirectional projection measures of rough neutrosophic sets. Neutros. Sets Syst., 19: 101-109.
    Direct Link  |  
  38. Pramanik, S., R. Roy and T.K. Roy, 2018. Multi Criteria Decision Making Based on Projection and Bidirectional Projection Measures of Rough Neutrosophic Sets. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). vol 2 Pons Editions, Brussels, pp: 175-187.
  39. Pramanik, S., R. Mallick and A. Dasgupta, 2018. Contributions of Selected indian researchers to multi attribute decision making in neutrosophic environment: An overview. Neut. Sets Syst., 20: 109-131.
    Direct Link  |  
  40. Pramanik, S., P.P. Dey and F. Smarandache, 2018. Correlation coefficient measures of interval bipolar neutrosophic sets for solving multi-attribute decision making problems. Neutr.. Sets Syst., 19: 70-79.
    Direct Link  |  
  41. Pramanik, S., P.P. Dey and B.C. Giri, 2018. Hybrid Vector Similarity Measure of Single Valued Refined Neutrosophic Sets To Multi-Attribute Decision Making Problems. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). vol 2 Pons Editions, Brussels, pp: 156-174.
  42. Pramanik, S., I. Maiti and T. Mandal, 2018. A Taylor series based fuzzy mathematical approach for multi objective linear fractional programming problem with fuzzy parameters. Int. J. Comput. Applic., 180: 22-29.
    Direct Link  |  
  43. Pramanik, S. and S. Dalapati, 2018. A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment. Neutr. Sets Syst., 21: 131-141.
    Direct Link  |  
  44. Pramanik, S. and P.P. Dey, 2018. Bi-level linear programming problem with neutrosophic numbers. Neut. Sets Syst., 21: 110-121.
    CrossRef  |  Direct Link  |  
  45. Pramanik, S. and D. Banerjee, 2018. Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment. MOJ Curr. Res. Rev., 1: 135-141.
    CrossRef  |  Direct Link  |  
  46. Mondal, K., S. Pramanik, B.C. Giri and F. Smarandache, 2018. NN-Harmonic mean aggregation operators-based MCGDM strategy in a neutrosophic number environment. Axioms, Vol 7 10.3390/axioms7010012.
    CrossRef  |  Direct Link  |  
  47. Mondal, K., S. Pramanik and B.C. Giri, 2018. Single valued neutrosophic hyperbolic sine similarity measure based MADM strategy. Neutr. Sets Syst., 20: 3-11.
    Direct Link  |  
  48. Mondal, K., S. Pramanik and B.C. Giri, 2018. Multi-Criteria Group Decision Making Based on Linguistic Refined Neutrosophic Strategy. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol.2, Pons Editions, Brussels, pp: 125-139.
  49. Mondal, K., S. Pramanik and B.C. Giri, 2018. Hybrid binary logarithm similarity measure for MAGDM problems under SVNS assessments. Neutr. Sets Syst., 20: 12-25.
    Direct Link  |  
  50. Broumi, S., A. Bakali, M. Talea, F. Smarandache, and V. UluÒay et al., 2018. Neutrosophic sets: An overview. In: New trends in neutrosophic theory and applications, Smarandache, F.. and S. Pramanik (Eds.,), vol.2 Pons Editions, Brussels, pp: 403-434.
  51. Biswas, P., S. Pramanik and B.C. Giri, 2018. TOPSIS strategy for multi-attribute decision making with trapezoidal neutrosophic numbers. Neutros. Sets Syst., 19: 29-39.
    Direct Link  |  
  52. Biswas, P., S. Pramanik and B.C. Giri, 2018. Multi-Attribute Group Decision Making Based on Expected Value of Neutrosophic Trapezoidal Numbers. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol 2, Pons Editions, Brussels, pp: 103-124.
  53. Biswas, P., S. Pramanik and B.C. Giri, 2018. Distance measure based MADM strategy with interval trapezoidal neutrosophic numbers. Neutros. Sets Syst., 19: 40-46.
    Direct Link  |  
  54. Banerjee, D. and S. Pramanik, 2018. Single-objective linear goal programming problem with neutrosophic numbers. Int. J. Eng. Sci. Res. Technol., 7: 454-469.
    Direct Link  |  
  55. . Mondal, K., S. Pramanik and B.C. Giri, 2018. Interval neutrosophic tangent similarity measure based MADM strategy and its application to MADM problems. Neutros. Sets Syst., 19: 47-56.
    Direct Link  |  
  56. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. Some operations and properties of neutrosophic cubic soft set. Global J. Res. Rev., Vol. 4. .
    Direct Link  |  
  57. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. Neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets Syst., 16: 44-56.
  58. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. NC-TODIM-based MAGDM under a neutrosophic cubic set environment. Information, Vol 8 10.3390/info8040149.
    CrossRef  |  Direct Link  |  
  59. Pramanik, S., R. Roy, T.K. Roy and F. Smarandache, 2017. Multi criteria decision making using correlation coefficient under rough neutrosophic environment. Neutros. Sets Syst., 17: 29-36.
    Direct Link  |  
  60. Pramanik, S., P.P. Dey, B.C. Giri and F. Smarandache, 2017. Bipolar neutrosophic projection based models for solving multi-attribute decision making problems. Neutrosophic Sets Syst., 15: 70-79.
  61. Pramanik, S., P. Biswas and B.C. Giri, 2017. Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment. Neural Comput. Applic., 28: 1163-1176.
    CrossRef  |  Direct Link  |  
  62. Dalapati, S., S. Pramanik, S. Alam, S. Smarandache and T.K. Roy, 2017. IN-cross entropy based magdm strategy under interval neutrosophic set environment. Neutros. Sets Syst., 18: 43-57.
    CrossRef  |  Direct Link  |  
  63. Banerjee, D., B.C. Giri, S. Pramanik and F. Smarandache, 2017. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst., 15: 60-69.
  64. Pramanik, S., S. Dalapati and T.K. Roy, 2016. Neutrosophic Multi-Attribute Group Decision Making Strategy for Logistics Center Location Selection. In: Neutrosophic Operational Research, Smarandache, F., M.A. Basset and V. Chang (Eds). Volume III, Pons asbl, Brussels, pp: 13-32.
  65. Pramanik, S., S. Dalapati and T.K. Roy, 2016. Logistics Center Location Selection Approach Based on Neutrosophic Multi-Criteria Decision Making. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 161-174.
  66. Pramanik, S., R.S. Roy and T.K. Roy, 2016. Teacher Selection Strategy Based on Bidirectional Projection Measure in Neutrosophic Number Environment. In: Neutrosophic Operational Research, Smarandache, F., M.A. Basset and V. Chang (Eds.). Volume II, Pons asbl, Brussels, pp: 29-53.
  67. Pramanik, S., D. Banerjee and B.C. Giri, 2016. Topsis Approach for Multi Attribute Group Decision Making in Refined Neutrosophic Environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 79-91.
  68. Pramanik, S., D. Banerjee and B.C. Giri, 2016. TOPSIS approach to chance constrained multi-objective multilevel quadratic programming problem. Global J. Eng. Sci. Res. Manage., 3: 19-36.
  69. Pramanik, S., D. Banerjee and B.C. Giri, 2016. Multi-criteria group decision making model in neutrosophic refined set and its application. Global J. Eng. Sci. Res. Manage., 3: 12-18.
  70. Pramanik, S., 2016. Neutrosophic linear goal programming. Global J. Eng. Sci. Res. Manage., 3: 1-11.
  71. Pramanik, S. and K. Mondal, 2016. Rough bipolar neutrosophic set. Global J. Eng. Sci. Res. Manage., 3: 71-81.
  72. Mondal, K., S. Pramanik and F. Smarandache, 2016. Several Trigonometric Hamming Similarity Measures of Rough Neutrosophic Sets and Their Applications in Decision Making. In: New Trends in Neutrosophic Theory and Application, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Belgium, pp: 93-103.
  73. Mondal, K., S. Pramanik and F. Smarandache, 2016. Rough neutrosophic TOPSIS for multi-attribute group decision making. Neutrosophic Sets Syst., 13: 105-117.
  74. Mondal, K., S. Pramanik and F. Smarandache, 2016. Role of Neutrosophic Logic in Data Mining. In: New Trends in Neutrosophic Theory and Application, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 15-23.
  75. Mondal, K., S. Pramanik and F. Smarandache, 2016. Multi-attribute decision making based on rough neutrosophic variational coefficient similarity measure. Neutrosophic Sets Syst., 13: 3-17.
  76. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Topsis For Solving Multi-Attribute Decision Making Problems Under Bi-Polar Neutrosophic Environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 65-77.
  77. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Neutrosophic soft multi-attribute group decision making based on grey relational analysis method. J. New Results Sci., 5: 25-37.
    Direct Link  |  
  78. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neutrosophic Sets Syst., 11: 98-106.
  79. Biswas, P., S. Pramanik and B.C. Giri, 2016. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Applic., 27: 727-737.
    CrossRef  |  Direct Link  |  
  80. Biswas, P., S. Pramanik and B.C. Giri, 2016. Some Distance Measures of Single Valued Neutrosophic Hesitant Fuzzy Sets and Their Applications to Multiple Attribute Decision Making. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 55-63.
  81. Biswas, P., S. Pramanik and B.C. Giri, 2016. Gra Method of Multiple Attribute Decision Making With Single Valued Neutrosophic Hesitant Fuzzy Set Information. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 55-63.
  82. Biswas, P., S. Pramanik and B.C. Giri, 2016. Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets Syst., 12: 20-40.
  83. Banerjee, D., K. Mondal and S. Pramanik, 2016. Fuzzy goal programming approach for soil allocation problem in brick-fields-a case study. Global J. Eng. Sci. Res. Manage., 3: 1-16.
    Direct Link  |  
  84. Pramanik, S., P.P. Dey and B.C. Giri, 2015. TOPSIS for single valued neutrosophic soft expert set based multi-attribute decision making problems. Neutrosophic Sets Syst., 10: 88-95.
    Direct Link  |  
  85. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Multi-objective chance constrained transportation problem with fuzzy parameters. Global J. Adv. Res., 2: 49-63.
  86. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Multi-level multi-objective linear plus linear fractional programming problem based on FGP approach. Int. J. Innov. Sci. Eng. Technol., 2: 153-160.
  87. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Chance constrained multi-level linear programming problem. Int. J. Comput. Applic., 120: 1-6.
  88. Pramanik, S., 2015. Multilevel programming problems with fuzzy parameters: A fuzzy goal programming approach. Int. J. Comput. Applic., 122: 34-41.
  89. Pramanik, S. and K. Mondal, 2015. Weighted fuzzy similarity measure based on tangent function and its application to medical diagnosis. Int. J. Innov. Res. Sci. Eng. Technol., 4: 158-164.
  90. Pramanik, S. and K. Mondal, 2015. Some rough neutrosophic similarity measure and their application to multi attribute decision making. Global J. Eng. Sci. Res. Manage., 2: 61-74.
  91. Pramanik, S. and K. Mondal, 2015. Interval neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets Syst., 9: 13-22.
  92. Pramanik, S. and K. Mondal, 2015. Cotangent similarity measure of rough neutrosophic sets and its application to medical diagnosis. J. New Theory, 4: 90-102.
  93. Pramanik, S. and K. Mondal, 2015. Cosine similarity measure of rough neutrosophic sets and its application in medical diagnosis. Global J. Adv. Res., 2: 212-220.
    Direct Link  |  
  94. Mondal, K. and S. Pramanik, 2015. Rough neutrosophic multi-attribute decision-making based on rough accuracy score function. Neutrosophic Sets Syst., 8: 16-22.
  95. Mondal, K. and S. Pramanik, 2015. Rough neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets Syst., 7: 8-17.
  96. Mondal, K. and S. Pramanik, 2015. Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets Syst., 9: 85-92.
  97. Mondal, K. and S. Pramanik, 2015. Neutrosophic refined similarity measure based on tangent function and its application to multi attribute decision making. J. New Theory, 8: 41-50.
  98. Mondal, K. and S. Pramanik, 2015. Neutrosophic refined similarity measure based on cotangent function and its application to multi-attribute decision making. Global J. Adv. Res., 2: 486-494.
    Direct Link  |  
  99. Mondal, K. and S. Pramanik, 2015. Neutrosophic decision making model of school choice. Neutrosophic Sets Syst., 7: 62-68.
  100. Mondal, K. and S. Pramanik, 2015. Neutrosophic decision making model for clay-brick selection in construction field based on grey relational analysis. Neutrosophic Sets Syst., 9: 64-71.
  101. Mondal, K. and S. Pramanik, 2015. Intuitionistic fuzzy similarity measure based on tangent function and its application to multi-attribute decision making. Global J. Adv. Res., 2: 464-471.
  102. Mondal, K. and S. Pramanik, 2015. Decision making based on some similarity measures under interval rough neutrosophic environment. Neutrosophic Sets Syst., 10: 46-57.
  103. Mondal, K. and S. Pramanik, 2015. Application of grey system theory in predicting the number of deaths of women by committing suicide-a case study. J. Applied Quantitative Methods, 10: 48-55.
  104. Dey, P.P., S. Pramanik and B.C. Giri, 2015. Multi-criteria group decision making in intuitionistic fuzzy environment based on grey relational analysis for weaver selection in Khadi institution. J. Applied Quantitative Methods, 10: 1-14.
  105. Dey, P.P., S. Pramanik and B.C. Giri, 2015. Generalized neutrosophic soft multi-attribute group decision making based on TOPSIS. Crit. Rev., 11: 41-55.
  106. Dey, P.P., S. Pramanik and B.C. Giri, 2015. An extended grey relational analysis based interval neutrosophic multi-attribute decision making for weaver selection. J. New Theory, 9: 82-93.
  107. Biswas, P., S. Pramanik and B.C. Giri, 2015. Cosine similarity measure based multi-attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst., 8: 47-57.
  108. Pramanik, S. and T.K. Roy, 2014. Neutrosophic game theoretic approach to indo-pak conflict over Jammu-Kashmir. Neutrosophic Sets Syst., 2: 82-101.
  109. Mondal, K. and S. Pramanik, 2014. Multi-criteria group decision making approach for teacher recruitment in higher education under simplified neutrosophic environment. Neutrosophic Sets Syst., 6: 28-34.
  110. Mondal, K. and S. Pramanik, 2014. A study on problems of hijras in west bengal based on neutrosophic cognitive maps. Neutrosophic Sets Syst., 5: 21-26.
    Direct Link  |  
  111. Mondal, K. And S. Pramanik, 2014. Intuitionistic fuzzy multicriteria group decision making approach to quality-brick selection problem. J. Applied Quantitative Methods, 9: 35-50.
  112. Dey, P.P., S. Pramanik and B.C. Giri, 2014. TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming. J. Ind. Eng. Int., 10: 173-184.
    Direct Link  |  
  113. Dey, P.P., S. Pramanik and B.C. Giri, 2014. Multilevel fractional programming problem based on fuzzy goal programming. Int. J. Innov. Res. Technol. Sci., 2: 17-26.
  114. Biswas, P., S. Pramanik and B.C. Giri, 2014. Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neutrosophic Sets Syst., 2: 105-113.
    Direct Link  |  
  115. Biswas, P., S. Pramanik and B.C. Giri, 2014. A study on information technology professionals’ health problem based on intuitionistic fuzzy cosine similarity measure. Swiss J. Statist. Applied Math., 2: 44-50.
  116. Biswas, P., S. Pramanik and B.C. Giri, 2014. A new methodology for neutrosophic multi-attribute decision-making with unknown weight information. Neutrosophic Sets Syst., 3: 44-54.
  117. Pramanik, S., 2013. A critical review of Vivekanada’s educational thoughts for women education based on neutrosophic logic. MS Acad., 3: 191-198.
  118. Pramanik, S. and T.K. Roy, 2013. Game theoretic model to the Jammu-Kashmir conflict between India and Pakistan. Int. J. Math. Arch., 4: 162-170.
  119. Pramanik, S. and S.N. Chackrabarti, 2013. A study on problems of construction workers in West Bengal based on neutrosophic cognitive maps. Intl. J. Innovative Res. Sci. Eng. Technol., 2: 6387-6394.
    Direct Link  |  
  120. Dey, P.P., S. Pramanik and B.C. Giri, 2013. Fuzzy goal programming algorithm for solving bi-level multi-objective linear fractional programming problems. Int. J. Math. Arch., 4: 154-161.
  121. Pramanik, S., P.P. Dey and T.K. Roy, 2012. Fuzzy goal programming approach to linear fractional bilevel decentralized programming problem based on Taylor series approximation. J. Fuzzy Math., 20: 231-238.
    Direct Link  |  
  122. Pramanik, S., D. Banerjee and B.C. Giri, 2012. Chance constrained linear plus linear fractional bi-level programming problem. Int. J. Comput. Applic., 56: 34-39.
  123. Pramanik, S., 2012. Bilevel programming problem with fuzzy parameter: A fuzzy goal programming approach. J. Applied Quantitative Methods, 7: 9-24.
  124. Pramanik, S. and P. Biswas, 2012. Multi-objective assignment problem with generalized trapezoidal fuzzy numbers. Int. J. Applied Inf. Syst., 2: 13-20.
  125. Pramanik, S. and D. Banerjee, 2012. Multi-objective chance constrained capacitated transportation problem based on fuzzy goal programming. Int. J. Comput. Applic., 44: 42-46.
  126. Pramanik, S. and D. Banerjee, 2012. Chance constrained quadratic bi-level programming problem. Int. J. Mod. Eng. Res., 2: 2417-2424.
    Direct Link  |  
  127. Banerjee, D. and S. Pramanik, 2012. Goal programming approach to chance constrained multi-objective linear fractional programming problem based on Taylor’s series approximation. Int. J. Comput. Technol., 2: 77-80.
  128. Banerjee, D. and S. Pramanik, 2012. Chance constrained multi-objective linear plus linear fractional programming problem based on Taylor’s series approximation. Int. J. Eng. Res. Dev., 1: 55-62.
  129. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Multi-objective linear plus linear fractional programming problem based on Taylor series approximation. Int. J. Comput. Applic., 32: 61-68.
  130. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Fuzzy goal programming approach to quadratic bi-level multi-objective programming problem. Int. J. Comput. Applic., 29: 9-14.
  131. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Decentralized bi-level multi-objective programming problem with fuzzy parameters based on fuzzy goal programming. Bull. Calcutta Math. Soc., 103: 381-390.
  132. Pramanik, S. and P.P. Dey, 2011. Quadratic bi-level programming problem based on fuzzy goal programming approach. Int. J. Software Eng. Applic., 2: 41-59.
  133. Pramanik, S. and P.P. Dey, 2011. Multi-objective quadratic programming problem: A priority based fuzzy goal programming. Int. J. Comput. Applic., 26: 30-35.
  134. Pramanik, S. and P.P. Dey, 2011. Multi-objective quadratic programming problem based on fuzzy goal programming. Int. J. Pure Applied Sci. Technol., 6: 45-53.
  135. Pramanik, S. and P.P. Dey, 2011. Multi-objective linear fractional programming problem based on fuzzy goal programming. Int. J. Math. Arch., 2: 1875-1881.
  136. Pramanik, S. and P.P. Dey, 2011. Bi-level multi-objective programming problem with fuzzy parameters. Int. J. Comput. Applic., 30: 13-20.
  137. Pramanik, S. and P.P. Dey, 2011. Bi-level linear fractional programming problem based on fuzzy goal programming approach. Int. J. Comput. Applic., 25: 34-40.
  138. Pramanik, S. and P.P. Dey, 2011. A priority based fuzzy goal programming to multi-objective linear fractional programming problem. Int. J. Comput. Applic., 30: 1-6.
  139. Pramanik, S. and P. Biswas, 2011. Priority based fuzzy goal programming method for solving multi-objective assignment problem with fuzzy parameters. Int. J. Math. Comput. Methods Sci. Technol., 1: 14-26.
  140. Pramanik, S. and D. Mukhopadhyaya, 2011. Grey relational analysis based intuitionistic fuzzy multi criteria group decision-making approach for teacher selection in higher education. Int. J. Comput. Applic., 34: 21-29.
  141. Dey, P.P. and S. Pramanik, 2011. Goal programming approach to linear fractional bilevel programming problem based on Taylor series approximation. Int. J. Pure Applied Sci. Technol., 6: 115-123.
  142. Biswas, P. and S. Pramanik, 2011. Replacement problem with grey parameters. Int. J. Comput. Applic., 32: 11-16.
  143. Biswas, P. and S. Pramanik, 2011. Multi-objective assignment problem with fuzzy costs for the case military affairs. Int. J. Comput. Applic., 30: 7-12.
  144. Biswas, P. and S. Pramanik, 2011. Fuzzy ranking method to assignment problem with fuzzy costs. Int. J. Math. Arch., 2: 2549-2560.
  145. Biswas, P. and S. Pramanik, 2011. Fuzzy approach to replacement problem with value of money changes with time. Int. J. Comput. Applic., 30: 28-33.
  146. Biswas, P. and S. Pramanik, 2011. Application of fuzzy ranking method to determine the replacement time for fuzzy replacement problem. Int. J. Comput. Applic., 25: 41-47.
  147. Pramanik, S. and T.K. Roy, 2008. Multiobjective transportation model with fuzzy parameters: A priority based fuzzy goal programming. J. Trans. Syst. Eng. Inf. Technol., 8: 40-48.
  148. Pramanik, S. and T.K. Roy, 2007. Intuitionist fuzzy goal programming and its application in solving multi-objective transportation problem. Tamsui Oxford J. Manage. Sci., 23: 1-17.
  149. Pramanik, S. and T.K. Roy, 2007. Fuzzy goal programming approach to multilevel programming problems. Eur. J. Operat. Res., 176: 1151-1166.
    CrossRef  |  Direct Link  |  
  150. Pramanik, S. and T.K. Roy, 2007. An intuitionistic fuzzy goal programming approach for a quality control problem: A case study. Tamsui Oxford J. Manage. Sci., 23: 1-18.
  151. Pramanik, S. and T.K. Roy, 2006. A fuzzy goal programming technique for solving multi-objective transportation problem. Tamsui Oxford J. Manage. Sci., 22: 67-89.
  152. Pramanik, S. and T.K. Roy, 2005. A goal programming procedure for solving unbalanced transportation problem having multiple fuzzy goals. Tamsui Oxford J. Manage. Sci., 21: 37-52.
  153. Pramanik, S. and T.K. Roy, 2005. A fuzzy goal programming approach for multi-objective capacitated transportation problem. Tamsui Oxford J. Manage. Sci., 21: 75-88.
  154. Pramanik, S. And T.K. Roy, 2005. An intuitionistic fuzzy goal programming approach to vector optimization problem. Intuitionistic Fuzzy Sets, 11: 1-14.