Dr. P. Perumal
My Social Links

Dr. P. Perumal

Department of Computer Science and Engineering (UG), Sri Ramakrishna Engineering College, India

Highest Degree
Ph.D. in Information and Communication Engineering from Anna University, Chennai, India

Share this Profile

Area of Interest:

Computer Sciences
Data Mining
Image Processing
Information Technology
Software Engineering

Research Publications in Numbers


Selected Publications

  1. Indumathi, A. and P. Perumal, 2018. Improved text mining for bulk data using deep learning approach. Int. J. Comput. Sci. Inform. Security, 16: 251-254.
  2. Swathi, V., S.S. Kumar and P. Perumal, 2017. A novel fuzzy-bayesian classification method for automatic text categorization. Int. J. Scient. Res. Sci. Technol., 2: 233-239.
    Direct Link  |  
  3. Sowmiya, H. and P. Perumal, 2017. Traffic aware partitioning and aggregation using map reduce with data security. Int. J. Pure Applied Math., 115: 629-635.
    Direct Link  |  
  4. Pitchandi, P., S. Muthukumaravel and S. Boopathy, 2016. Content based segregation of pertinent documents using adaptive progression. Circuits Syst., 7: 1856-1865.
    CrossRef  |  Direct Link  |  
  5. Perumal, P., M.S.G. Devasena and R. Ramya, 2016. Enhanced filter based personalized semantic search. Asian J. Inform. Technol., 15: 4844-4850.
    CrossRef  |  Direct Link  |  
  6. Perumal, P. and N.A. Reddy, 2015. Data aware query suggestion by user click through feedback. Int. J. Contemp. Res. Comput. Sci. Technol., 1: 15-20.
  7. Perumal, P. and M. Kasthuri, 2015. A survey on opinion mining from online review sentences. Int. Res. J. Eng. Technol., 2: 1183-1189.
    Direct Link  |  
  8. Perumal, P. and D. Anandhu, 2015. Video search reranking via cross reference based fusion strategy. Int. J. Trend Res. Dev., 2: 22-29.
    Direct Link  |  
  9. Perumal, P., R. Nedunchezhian and C. Gomathi, 2013. An enhanced document clustering approach using optimization algorithm. Int. J. Res. Eng. Adv. Technol., 1: 1-7.
  10. Perumal, P. and R. Nedunchezhian, 2012. MLK-means-A hybrid machine learning based k-means clustering algorithm for document clustering. Int. J. Comput. Sci. Issues, 9: 282-293.
    Direct Link  |  
  11. Perumal, P. and R. Nedunchezhian, 2012. Concept based document similarity based on suffix tree document clustering. Int. J. Comput. Sci. Eng. Technol., 3: 470-475.
  12. Perumal, P. and R. Nedunchezhian, 2012. An improved hybrid K-means clustering algorithm using machine learning and von-mises-fisher method for document clustering. Wulfenia J., 19: 51-72.
  13. Perumal, P., R. Nedunchezhian and D. Brindha, 2011. An empirical selection method for document clustering. Int. J. Comput. Applic., 31: 15-19.
    Direct Link  |  
  14. Perumal, P. and R. Nedunchezhian, 2011. Performance evaluation of three model-based documents clustering algorithms. Eur. J. Scient. Res., 52: 618-629.
  15. Perumal, P. and R. Nedunchezhian, 2011. Performance analysis of standard k-means clustering algorithm on clustering TMG format document data. Int. J. Comput. Applic. Eng. Sci., 1: 406-412.
  16. Perumal, P. and R. Nedunchezhian, 2011. Improving the performance of multivariate Bernoulli model based document clustering algorithms using transformation techniques. J. Comput. Sci., 7: 762-769.