Dr. Santhosh George
My Social Links

Dr. Santhosh George

Professor
National Institute of Technology Karnataka, India


Highest Degree
Ph.D. in Mathematics and Computer Science from Goa University, India

Share this Profile

Area of Interest:

Mathematics
100%
Mathematical Sciences
62%
Operator Theory
90%
Functional Analysis
75%
Inverse Source Problem
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Sreedeep, C.D., S. George and I.K. Argyros, 2019. Newton-Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces. Rendiconti del Circolo Matematico di Palermo Series. 10.1007/s12215-019-00413-4.
    CrossRef  |  Direct Link  |  
  2. Shubha, V.S., S. George and P. Jidesh, 2019. Third-order derivative-free methods in Banach spaces for nonlinear ill-posed equations. J. Applied Math. Comput. 10.1007/s12190-019-01246-1.
    CrossRef  |  Direct Link  |  
  3. George, S. and I.K. Argyros, 2019. Local convergence comparison between two novel sixth order methods for solving equations. Ann. Univ. Paedagog. Crac. Stud. Math., 18: 5-19.
    CrossRef  |  
  4. Argyros, I.K., Y.J. Cho, S. George and Y.B. Xiao, 2019. Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 113: 2813-2826.
    CrossRef  |  Direct Link  |  
  5. Argyros, I.K., Y.J. Cho and S. George, 2019. Improved local convergence analysis for a three point method of convergence order 1.839. Bull. Korean Math. Soc., 56: 621-629.
  6. Argyros, I.K., S.K. Khattri and S. George, 2019. Local convergence of an at least sixth-order method in Banach spaces. J. Fixed Point Theory Applic., Vol. 21. 10.1007/s11784-019-0662-6.
    CrossRef  |  Direct Link  |  
  7. Argyros, I.K., S. George and S.M. Erappa, 2019. Local Convergence of a novel eighth order method under hypotheses only on the first derivative. Khayyam J. Math., 5: 96-107.
    CrossRef  |  Direct Link  |  
  8. Argyros, I.K., S. George and K. Senapati, 2019. Extending the applicability of the inexact Newton-HSS method for solving large systems of nonlinear equations. Numer. Algorithms. 10.1007/s11075-019-00684-z.
    CrossRef  |  Direct Link  |  
  9. Argyros, I.K. and S. George, 2019. Unified convergence for multi-point super halley-type methods with parameters in banach space. Indian J. Pure Applied Math., 50: 1-13.
    CrossRef  |  Direct Link  |  
  10. Argyros, I.K. and S. George, 2019. Unified convergence analysis of frozen Newton-like methods under generalized conditions. J. Comput. Applied Math., 347: 95-107.
    CrossRef  |  Direct Link  |  
  11. Argyros, I.K. and S. George, 2019. Semi-local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions II. Trans. Math. Program. Applic., 7: 25-30.
  12. Argyros, I.K. and S. George, 2019. On a two-step kurchatov-type method in banach space. Mediterr. J. Math., Vol. 16. 10.1007/s00009-018-1285-7.
    CrossRef  |  Direct Link  |  
  13. Argyros, I.K. and S. George, 2019. Local convergence for an eighth order method for solving equations and systems of equations. Nonlinear Eng., 8: 74-79.
    CrossRef  |  Direct Link  |  
  14. Argyros, I.K. and S. George, 2019. Kantorovich-like convergence theorems for newton’s method using restricted convergence domains. Numer. Funct. Anal. Optimiz., 40: 303-318.
    CrossRef  |  Direct Link  |  
  15. Argyros, I.K. and S. George, 2019. Hybrid newton-like methods with high order of convergence. Adv. Applic. Math. Sci., 18: 387-393.
    Direct Link  |  
  16. Argyros, I.K. and S. George, 2019. Extended semi-local convergence of newton's method using the center lipschitz condition and the restricted convergence domain. Fundam. J. Math. Applic., 2: 5-9.
    CrossRef  |  Direct Link  |  
  17. Argyros, I.K. and S. George, 2019. Convergence of derivative free iterative methods. Creat. Inform., 28: 19-26.
  18. Argyros, I.K. and S. George, 2019. Convergence for variants of Chebyshev-Halley methods using restricted convergence domains. Applic. Math., 46: 115-126.
    CrossRef  |  Direct Link  |  
  19. Argyros, I.K. and S. George, 2019. Ball convergence for a sixth-order multi-point method in Banach spaces under weak conditions. Applic. Math. 10.4064/am2350-2-2018.
    CrossRef  |  Direct Link  |  
  20. Sreedeep, C.D., S. George and I.K. Argyros, 2018. Extended Newton-type iteration for nonlinear ill-posed equations in Banach space. J. Applied Math. Comput., 60: 435-453.
    CrossRef  |  Direct Link  |  
  21. Sabari, M. and S. George, 2018. Modified minimal error method for nonlinear Ill-posed problems. Comput. Methods Applied Math., 18: 313-321.
    CrossRef  |  Direct Link  |  
  22. George, S. and M. Sabari, 2018. Numerical approximation of a Tikhonov type regularizer by a discretized frozen steepest descent method. J. Comput. Applied Math., 330: 488-498.
    CrossRef  |  Direct Link  |  
  23. George, S. and K. Kanagaraj, 2018. Derivative free regularization method for nonlinear ill-posed equations in Hilbert scales. Comput. Methods Applied Math. 10.1515/cmam-2018-0019.
    CrossRef  |  Direct Link  |  
  24. George, S. and I.K. Argyros, 2018. Local convergence for a Chebyshev-type method in Banach space free of derivatives. Adv. Theory Nonlinear Anal. Applic., 2: 62-69.
  25. George, S. and C.D. Sreedeep, 2018. Lavrentiev's regularization method for nonlinear ill-posed equations in Banach spaces. Acta Math. Sci., 38: 303-314.
    CrossRef  |  Direct Link  |  
  26. Argyros, I.K., Y.J. Cho and S. George, 2018. Extended convergence of Gauss-Newton’s method and uniqueness of the solution. Carpathian J. Math., 34: 135-142.
  27. Argyros, I.K., S.K. Khattri and S. George, 2018. On a new semilocal convergence analysis for the Jarratt method. PanAm. Math. J., 28: 72-90.
  28. Argyros, I.K., S. K. Khattri and S. George, 2018. An improved semilocal conver-gence analysis for the Halley method. Adv. Nonlinear Variational Inequalities, 21: 1-17.
  29. Argyros, I.K., S. George and S.M. Erappa, 2018. Extending the applicability of Newton’s and secant methods under regular smoothness. Boletim da Sociedade Paranaense de Matematica, 3: 1-16.
    Direct Link  |  
  30. Argyros, I.K., H. Ren and S. George, 2018. Convergence ball of Muller's method for non-dierentiable functions. PanAm. Math. J., 28: 63-71.
  31. Argyros, I.K. and S. George, 2018. Weak semilocal convergence conditions for a two-step newton method in Banach space. Fundam. J. Math. Applic., 1: 137-144.
  32. Argyros, I.K. and S. George, 2018. Semilocal convergence analysis a fifth-order method using recurrence relation in Banach space under weak conditions. Applic. Math., 45: 223-231.
  33. Argyros, I.K. and S. George, 2018. Semi-local convergence of a Newton-like method for solving equations with a singular derivative. Creat. Math. Inform., 27: 1-8.
  34. Argyros, I.K. and S. George, 2018. On the complexity of choosing majorizing sequences for iterative procedures. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 113: 1463-1473.
    CrossRef  |  Direct Link  |  
  35. Argyros, I.K. and S. George, 2018. Local convergence of bilinear operator free methods under weak conditions. Matematicki Vesnik, 70: 1-11.
  36. Argyros, I.K. and S. George, 2018. Local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions. Commun. Applied Nonlinear Anal., 25: 85-97.
  37. Argyros, I.K. and S. George, 2018. Local convergence of a multi-point family of high order methods in banach spaces under holder continuous derivative. Int. J. Adv. Math., 2018: 53-60.
  38. Argyros, I.K. and S. George, 2018. Local convergence of a Hansen-Patrick-like family of optimal fourth order methods. TWMS J. Pure Applied Math., 9: 32-39.
    Direct Link  |  
  39. Argyros, I.K. and S. George, 2018. Local convergence for fifth order Traub-Ste ensen-Chebyshev-like composition free of derivatives in Banach space. Numer. Math. Theor. Meth. Appl., 11: 160-168.
  40. Argyros, I.K. and S. George, 2018. Local convergence for composite Chebyshev-type methods. Commun. Adv. Math. Sci., 1: 1-5.
  41. Argyros, I.K. and S. George, 2018. Local convergence for a family of sixth order Chebyshev-Halley-type methods in banach space under weak conditions. Khayyam J. Math., 4: 1-12.
    CrossRef  |  Direct Link  |  
  42. Argyros, I.K. and S. George, 2018. Local convergence analysis of an efficient fourth order weighted-newton method under weak conditions. Ann. West Univ. Timisoara-Math. Comput. Sci., 56: 23-34.
    CrossRef  |  Direct Link  |  
  43. Argyros, I.K. and S. George, 2018. Increasing the order of convergence for iterative methods in Banach space under weak conditions. Malaya J. Matematik, 6: 396-401.
    CrossRef  |  Direct Link  |  
  44. Argyros, I.K. and S. George, 2018. Improved semi-local convergence of the Gauss-Newton method for systems of equations. J. Math. Sci. Model., 1: 80-85.
    Direct Link  |  
  45. Argyros, I.K. and S. George, 2018. Improved secant-updates of rank 1 in Hilbert space. Adv. Nonlinear Variational Inequalities, 21: 49-54.
  46. Argyros, I.K. and S. George, 2018. Improved complexity of a homotopy method for locating an approximate zero. Punjab Univ. J. Math., 50: 1-10.
    Direct Link  |  
  47. Argyros, I.K. and S. George, 2018. Extending the applicability of the super-halley-like method using ω-continuous derivatives and restricted convergence domains. Ann. Math. Silesianae. 10.2478/amsil-2018-0008.
    CrossRef  |  Direct Link  |  
  48. Argyros, I.K. and S. George, 2018. Extending the applicability of an Ulm-Newton-like method under generalized conditions in Banach space. Res. Rep. Math., Vol. 2. .
    Direct Link  |  
  49. Argyros, I.K. and S. George, 2018. Extended optimality of the secant method on banach spaces. Commun. Optim. Theory, Vol. 2018. .
    Direct Link  |  
  50. Argyros, I.K. and S. George, 2018. Expanding the applicability of generalized high convergence order methods for solving equations. Khayyam J. Math., 4: 167-177.
    CrossRef  |  Direct Link  |  
  51. Argyros, I.K. and S. George, 2018. Enlarging the radius of convergence for the halley method to solve equations with solutions of multiplicity under weak conditions. Res. Rep. Math., Vol. 2. .
    Direct Link  |  
  52. Argyros, I.K. and S. George, 2018. Enlarging the ball convergence for the modified Newton method to solve equations with solutions of multiplicity under weak conditions. Numer. Math. Theor. Meth. Appl., 11: 506-517.
  53. Argyros, I.K. and S. George, 2018. Ball convergence of some iterative methods for nonlinear equations in Banach space under weak conditions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 112: 1169-1177.
    CrossRef  |  Direct Link  |  
  54. Argyros, I.K. and S. George, 2018. A unified local convergence for two-step Newton-type methods with high order of convergence under weak conditions. Sohag J. Math., 5: 1-8.
  55. Argyros, I. and S. George, 2018. Unified semi-local convergence for k-step iterative methods with flexible and frozen linear operator. Mathematics, Vol. 6. 10.3390/math6110233.
    CrossRef  |  Direct Link  |  
  56. Argyros, I. and S. George, 2018. Expanding the applicability of generalized high convergence order methods for solving equations. Khayyam J. Math., 4: 167-177.
  57. George, S., V.S. Shubha and P. Jidesh, 2017. Convergence of a Tikhonov gradient type-method for nonlinear ill-posed equations. Int. J. Applied Comput. Math., 3: 1205-1215.
    CrossRef  |  Direct Link  |  
  58. George, S. and M.T. Nair, 2017. A derivative-free iterative method for nonlinear ill-posed equations with monotone operators. J. Inverse Ill-Posed Problems, 25: 543-551.
    CrossRef  |  Direct Link  |  
  59. George, S. and M. Sabari, 2017. Error estimate for modified steepest descent method for nonlinear ill-posed problems under Holder-type source condition. Math. Inverse Probl., 4: 1-11.
    Direct Link  |  
  60. George, S. and M. Sabari, 2017. Convergence rate results for steepest descent type method for nonlinear ill-posed equations. Applied Math. Comput., 294: 169-179.
    CrossRef  |  Direct Link  |  
  61. Argyros, I.K., S.M. Sheth, R.M. Younis, A.A. Magrenan and S. George, 2017. Extending the mesh independence for solving nonlinear equations using restricted domains. Int. J. Applied Comput. Math., 3: 1035-1046.
    CrossRef  |  Direct Link  |  
  62. Argyros, I.K., S. Muruster and S. George, 2017. On the convergence of Stirling’s method for fixed points under not necessarily contractive hypotheses. Int. J. Applied Comput. Math., 3: 1071-1081.
    CrossRef  |  Direct Link  |  
  63. Argyros, I.K., S. George and S.M. Erappa, 2017. On the semilocal convergence of two step Newton-Tikhonov methods for ill-posed problems under weak conditions. Trans. Math. Programm. Applic., 5: 1-24.
    Direct Link  |  
  64. Argyros, I.K., S. George and S.M. Erappa, 2017. Inexact Newton's method to nonlinear functions with values in a cone using restricted convergence domains. Int. J. Applied Comput. Math., 3: 953-959.
    CrossRef  |  Direct Link  |  
  65. Argyros, I.K., S. George and S.M. Erappa, 2017. Expanding the applicability of the generalized Newton method for generalized equations. Commun. Optimiz. Theory, Vol. 2017. 10.23952/cot.2017.12.
    CrossRef  |  Direct Link  |  
  66. Argyros, I.K., S. George and S.M. Erappa, 2017. Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations. Rendiconti Circolo Matematico Palermo Series 2, 66: 303-323.
    CrossRef  |  Direct Link  |  
  67. Argyros, I.K., S. George and S.M. Erappa, 2017. Ball convergence for an eighth order efficient method under weak conditions in Banach spaces. SeMA J., 74: 513-521.
    CrossRef  |  Direct Link  |  
  68. Argyros, I.K., S. George and P. Jidesh, 2017. Iterative regularization for ill-posed operator equations in Hilbert scales. Nonlinear Stud., 24: 257-271.
    Direct Link  |  
  69. Argyros, I.K., P. Jidesh and S. George, 2017. On the local convergence of Newton-like methods with fourth and fifth order of convergence under hypotheses only on the first Frechet derivative. Novi Sad J. Math., 47: 1-15.
    Direct Link  |  
  70. Argyros, I.K., P. Jidesh and S. George, 2017. Improved robust semi-local convergence analysis of Newton's method for cone inclusion problem in Banach spaces under restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 421-432.
    Direct Link  |  
  71. Argyros, I.K., P. Jidesh and S. George, 2017. Ball convergence for second derivative free methods in banach space. Int. J. Applied Comput. Math., 3: 713-720.
    CrossRef  |  Direct Link  |  
  72. Argyros, I.K. and S. George, 2017. Unified local convergence for some high order methods with one parameter. Global J. Sci. Front. Res., 17: 51-58.
    Direct Link  |  
  73. Argyros, I.K. and S. George, 2017. On the convergence of Newton-like methods using restricted domains. Numer. Algorithms, 75: 553-567.
    CrossRef  |  Direct Link  |  
  74. Argyros, I.K. and S. George, 2017. On the convergence of Broyden's method with regularity continuous divided differences and restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2017. 10.23952/jnfa.2017.21.
    CrossRef  |  Direct Link  |  
  75. Argyros, I.K. and S. George, 2017. On Newton's method for subanalytic equations. J. Numer. Anal. Approximation Theory, 46: 25-37.
    Direct Link  |  
  76. Argyros, I.K. and S. George, 2017. Local results for an iterative method of convergence order six and efficiency index 1.8171. Novi Sad J. Math., 47: 19-29.
    Direct Link  |  
  77. Argyros, I.K. and S. George, 2017. Local convergence of some high order iterative methods based on the decomposition technique using only the first derivative. Surv. Math. Applic., 12: 51-63.
    Direct Link  |  
  78. Argyros, I.K. and S. George, 2017. Local convergence of deformed Euler-Halley-type methods in Banach space under weak conditions. Asian-Eur. J. Math., Vol. 10, No. 2. 10.1142/S1793557117500863.
    CrossRef  |  Direct Link  |  
  79. Argyros, I.K. and S. George, 2017. Local convergence of a two-step Newton-Secant method for equations with solutions of multiplicity greater than one. Pan-Am. Math. J., 27: 15-28.
  80. Argyros, I.K. and S. George, 2017. Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative. Ann. Univ. Paedagog. Crac. Stud. Math., 16: 41-50.
    CrossRef  |  Direct Link  |  
  81. Argyros, I.K. and S. George, 2017. Local convergence of a fifth convergence order method in Banach space. Arab J. Math. Sci., 23: 205-214.
    CrossRef  |  Direct Link  |  
  82. Argyros, I.K. and S. George, 2017. Local convergence of a fast Steffensen-type method on Banach space under weak conditions. Int. J. Comput. Sci. Math., 8: 495-505.
    CrossRef  |  Direct Link  |  
  83. Argyros, I.K. and S. George, 2017. Local convergence of Jarratt-type methods with less computation of inversion under weak conditions. Math. Modell. Anal., 22: 228-236.
    CrossRef  |  Direct Link  |  
  84. Argyros, I.K. and S. George, 2017. Local convergence for an almost sixth order method for solving equations under weak conditions. SeMA J., 75: 163-171.
    CrossRef  |  Direct Link  |  
  85. Argyros, I.K. and S. George, 2017. Local convergence for a frozen family of Steffensen-like methods under weak conditions. Res. Applied Math., Vol. 1. 10.11131/2017/101259.
    CrossRef  |  Direct Link  |  
  86. Argyros, I.K. and S. George, 2017. Improved convergence conditions of a Lavrentiev-type method for nonlinear ill-posed equations by using restricted convergence domains. Ann. Univ. Sci. Budapest Sect. Comput., 46: 355-371.
    Direct Link  |  
  87. Argyros, I.K. and S. George, 2017. Improved convergence analysis for the Kurchatov method. Nonlinear Funct. Anal. Applic., 22: 41-58.
    Direct Link  |  
  88. Argyros, I.K. and S. George, 2017. Improved convergence analysis for King-Werner-like methods free of derivatives using restricted convergence. Commun. Optimiz. Theory, Vol. 2017. 10.23952/cot.2017.1.
    CrossRef  |  Direct Link  |  
  89. Argyros, I.K. and S. George, 2017. Higher order derivative-free iterative methods with and without memory in Banach space under weak conditions. Bangmod Int. J. Math. Comput. Sci., 3: 25-34.
  90. Argyros, I.K. and S. George, 2017. Extending the local convergence of some iterative methods based on quadrature formulas on Banach space under weak conditions. Trans. Math. Programm. Applic., 5: 51-59.
  91. Argyros, I.K. and S. George, 2017. Extending the convergence domain of Newton's method for generalized equations. Serdica Math. J., 43: 65-78.
  92. Argyros, I.K. and S. George, 2017. Extending the applicability of Newton's method using Wang's-Smale's α-theory. Carpathian J. Math., 33: 27-33.
    Direct Link  |  
  93. Argyros, I.K. and S. George, 2017. Extended and unified local convergence for Newton-Kantorovich method under w-conditions with applications. WSEAS Trans. Math., 16: 248-256.
    Direct Link  |  
  94. Argyros, I.K. and S. George, 2017. Expanding the applicability of the Kantorovich's theorem for solving generalized equations using Newton's method. Int. J. Applied Comput. Math., 3: 3295-3304.
    CrossRef  |  Direct Link  |  
  95. Argyros, I.K. and S. George, 2017. Expanding the applicability of the Gauss-Newton method for convex optimization under restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 197-207.
    Direct Link  |  
  96. Argyros, I.K. and S. George, 2017. Expanding the applicability of inexact Newton methods using restricted convergence domains. Applic. Math., 44: 123-133.
    CrossRef  |  Direct Link  |  
  97. Argyros, I.K. and S. George, 2017. Expanding the applicability of Steffensen's method using restricted convergence domains. Adv. Applic. Math. Sci., 16: 133-150.
  98. Argyros, I.K. and S. George, 2017. Ball convergence of the Laguerre-like method for multiple zeros. Int. J. Adv. Math., 6: 114-122.
    Direct Link  |  
  99. Argyros, I.K. and S. George, 2017. Ball convergence of Newton's method for generalized equations using restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 485-494.
    Direct Link  |  
  100. Argyros, I.K. and S. George, 2017. Ball convergence for an inverse free Jarratt-type method under holder conditions. Int. J. Applied Comput. Math., 3: 157-164.
    CrossRef  |  Direct Link  |  
  101. Argyros, I.K. and S. George, 2017. Ball Convergence for two-parameter Chebyshev-Halley-like methods in Banach space using hypotheses only on the first derivative. Commun. Applied Nonlinear Anal., 24: 72-81.
  102. Argyros, I.K. and S. George, 2017. A study on the local convergence of a Steffensen-King-type iterative method. Nonlinear Stud., 24: 285-295.
    Direct Link  |  
  103. Argyros, I.K. and S. George, 2017. A convergence of a Steffensen-like method for solving nonlinear equations in a Banach space. Creat. Math. Inform., 26: 125-136.
  104. Argyris, I.K. and S. George, 2017. Ball convergence theorem for a Steffensen-type third-order method. Rev. Colomb. Mat., 51: 1-14.
    CrossRef  |  Direct Link  |  
  105. Anastassiou, G.A., I.K. Argyros and S. George, 2017. Proximal methods with invexity and fractional calculus. Pan-Am. Math. J., 27: 84-89.
  106. Shubha, V.S., S. George, P. Jidesh and M.E. Shobha, 2016. Finite dimensional realization of a quadratic convergence yielding iterative regularization method for ill-posed equations with monotone operators. Applied Math. Comput., 273: 1041-1050.
    CrossRef  |  Direct Link  |  
  107. Shubha, V.S., S. George and P. Jidesh, 2016. Finite dimensional realization of a Tikhonov gradient type-method under weak conditions. Rendiconti Circolo Matemat. Palermo Series, 2: 395-410.
    CrossRef  |  Direct Link  |  
  108. Argyros, I.K., Y.J. Cho and S. George, 2016. Local convergence for some third-order iterative methods under weak conditions. J. Korean Math. Soc., 53: 781-793.
  109. Argyros, I.K., S.M. Sheth, R.M. Younis and S. George, 2016. The asymptotic mesh independence principle of Newton's method under weaker conditions. Pan-Am. Math. J., 26: 44-56.
  110. Argyros, I.K., S.K. Khattri and S. George, 2016. On the local convergence of a secant like method in a Banach space under weak conditions. Pan-Am. Math. J., 26: 89-99.
  111. Argyros, I.K., S. George and S.M. Erappa, 2016. Local convergence of sixth-order newton-like methods based on stolarsky and gini means. Asian J. Math. Comput. Res., 8: 306-316.
    Direct Link  |  
  112. Argyros, I.K., S. George and M.E. Shobha, 2016. Discretized Newton-Tikhonov method for ill-posed hammerstein type equations. Commun. Applied Nonlinear Anal., 23: 34-55.
    Direct Link  |  
  113. Argyros, I.K., P. Jidesh and S. George, 2016. Ball convergence for a third order method based on Newton's method and the Adomian decomposition method. Int. J. Converg. Comput., 2: 300-307.
    CrossRef  |  Direct Link  |  
  114. Argyros, I.K. and S. George, 2016. Unified convergence domains of Newton-like methods for solving operator equations. Applied Math. Comput., 286: 106-114.
    CrossRef  |  Direct Link  |  
  115. Argyros, I.K. and S. George, 2016. On the convergence of inexact Gauss-Newton method for solving singular equations. J. Nonlinear Funct. Anal., Vol. 22. .
    Direct Link  |  
  116. Argyros, I.K. and S. George, 2016. On a result by Dennis and Schnabel for Newton's method: Further improvements. Applied Math. Lett., 55: 49-53.
    CrossRef  |  Direct Link  |  
  117. Argyros, I.K. and S. George, 2016. Local convergence of some fifth and sixth order iterative methods. Nonlinear Funct. Anal. Applic., 21: 413-424.
    Direct Link  |  
  118. Argyros, I.K. and S. George, 2016. Local convergence of inexact Gauss-Newton-like method for least square problems under weak Lipschitz condition. Commun. Applied Nonlinear Anal., 23: 56-70.
  119. Argyros, I.K. and S. George, 2016. Local convergence of deformed Jarratt-type methods in Banach space without inverses. Asian-Eur. J. Math., Vol. 9. 10.1142/S1793557116500157.
    CrossRef  |  Direct Link  |  
  120. Argyros, I.K. and S. George, 2016. Local convergence for inverse free Jarratt-type method in Banach space under Holder conditions. Commun. Applied Nonlinear Anal., 23: 72-81.
  121. Argyros, I.K. and S. George, 2016. Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weak conditions. Int. J. Applied Comput. Math., 2: 565-574.
    CrossRef  |  Direct Link  |  
  122. Argyros, I.K. and S. George, 2016. Local convergence for a family of cubically convergent methods in Banach space. Nonlinear Funct. Anal. Applic., 21: 263-272.
  123. Argyros, I.K. and S. George, 2016. Local convergence for a family of Chebyshev-Halley-like methods under relaxed conditions in Banach space. Trans. Math. Program. Applic., 4: 1-12.
  124. Argyros, I.K. and S. George, 2016. Local convergence for a derivative free method of order three under weak conditions. Int. J. Converg. Comput., 2: 41-53.
    CrossRef  |  Direct Link  |  
  125. Argyros, I.K. and S. George, 2016. Local convergence for Jarratt-like iterative methods in Banach space under weak conditions. J. Nonlinear Anal. Optimiz., 7: 17-25.
    Direct Link  |  
  126. Argyros, I.K. and S. George, 2016. Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  
  127. Argyros, I.K. and S. George, 2016. Improvements of the local convergence of Newton's method with fourth-order convergence. Asian J. Math. Comput. Res., 7: 9-17.
    Direct Link  |  
  128. Argyros, I.K. and S. George, 2016. Improved local convergence for Euler-Halley-like methods with a parameter. Rend. Circolo Matemat. Palermo, 65: 87-96.
    CrossRef  |  Direct Link  |  
  129. Argyros, I.K. and S. George, 2016. Improved convergence for King-Werner-type derivative free methods. J. Nonlinear Anal. Optimiz., 7: 97-103.
    Direct Link  |  
  130. Argyros, I.K. and S. George, 2016. Extending the applicability of a new Newton-like method for nonlinear equations. Commun. Optimiz. Theory, Vol. 2016. .
    Direct Link  |  
  131. Argyros, I.K. and S. George, 2016. Extending the applicability of Newton-secant methods for functions with values in a cone. Serdica Math. J., 42: 287-300.
  132. Argyros, I.K. and S. George, 2016. Extending the applicability of Newton's method for sections on Riemannian manifolds using restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  
  133. Argyros, I.K. and S. George, 2016. Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  
  134. Argyros, I.K. and S. George, 2016. Extending the applicability of Ecient Steensen-type algorithms for solving nonlinear equations. Adv. Applic. Math. Sci., 15: 13-23.
  135. Argyros, I.K. and S. George, 2016. Extended local analysis of inexact gauss-newton-like method for least square problems using restricted convergence domains. West Univ. Timisoara-Mathemat. Comput. Sci., 54: 17-33.
    Direct Link  |  
  136. Argyros, I.K. and S. George, 2016. Expanding the applicability of the shadowing lemma for operators with chaotic behavior using restricted convergence domains. Nonlinear Funct. Anal. Applic., 21: 591-596.
    Direct Link  |  
  137. Argyros, I.K. and S. George, 2016. Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations. J. Numer. Anal. Approx. Theory, 45: 3-13.
  138. Argyros, I.K. and S. George, 2016. Convergence analysis of a three step Newton-like method for nonlinear equations in Banach space under weak conditions. Ann. West Univ. Timisoara-Math. Comput. Sci., 54: 37-46.
    CrossRef  |  Direct Link  |  
  139. Argyros, I.K. and S. George, 2016. Ball convergence theorems for Maheshwari-type eighth-order methods under weak conditions. Sao Paulo J. Math. Sci., 10: 91-103.
    CrossRef  |  Direct Link  |  
  140. Argyros, I.K. and S. George, 2016. Ball convergence results for a method with memory of efficiency index 1.8392 using only functional values. J. Nonlinear Anal. Optimiz., 7: 91-96.
    Direct Link  |  
  141. Argyros, I.K. and S. George, 2016. Ball convergence of some fourth and sixth-order iterative methods. Asian-Eur. J. Math., Vol. 9. 10.1142/S1793557116500340.
    CrossRef  |  Direct Link  |  
  142. Argyros, I.K. and S. George, 2016. Ball convergence of an iterative method for nonlinear equations based on the decomposition technique under weak conditions. Ann. Univ. Sci. Budapest. Sect. Comput., 45: 291-301.
    Direct Link  |  
  143. Argyros, I.K. and S. George, 2016. Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions. Calcolo, 53: 585-595.
    CrossRef  |  Direct Link  |  
  144. Argyros, I.K. and S. George, 2016. Ball convergence of a novel Newton-Traub composition for solving equations. Cogent Math. Stat., Vol. 3. 10.1080/23311835.2016.1155333.
    CrossRef  |  Direct Link  |  
  145. Argyros, I.K. and S. George, 2016. Ball convergence for a novel-fourth order method for solving systems of equations. AJOMCOR, 11: 147-154.
  146. Argyros, I.K. and S. George, 2016. Ball convergence for a novel sixth order iterative method under hypothesis only on the first derivative. Nonlinear Studies, 23: 263-271.
    Direct Link  |  
  147. Argyros, I.K. and S. George, 2016. Ball convergence for a computationally efficient fifth-order method for solving equations in Banach space under weak conditions. Bangmod Int. J. Math. Comput. Sci., 2: 118-126.
    Direct Link  |  
  148. Argyros, I., S. George and S. Erappa, 2016. Local convergence for a family of iterative methods based on decomposition techniques. Applic. Math., 1: 133-143.
    CrossRef  |  Direct Link  |  
  149. Subha, V.S., S. George and P. Jidesh, 2015. A derivative free iterative method for the implementation of Lavrentiev regularization method for ill-posed equations. Numer. Algor., 68: 289-304.
    CrossRef  |  Direct Link  |  
  150. Jidesh, P., V.S. Shubha and S. George, 2015. A quadratic convergence yielding iterative method for the implementation of Lavrentiev regularization method for ill-posed equations. Applied Math. Comput., 254: 148-156.
    CrossRef  |  Direct Link  |  
  151. George, S. and I.K. Argyros, 2015. Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Non. Sc. Appli., 8: 246-254.
    Direct Link  |  
  152. George, S. and I.K. Argyros, 2015. A unified local convergence for Jarratt-type methods in Banach space under weak conditions. Thai J. Math., 13: 165-176.
  153. Argyros, I.K., S. George and A.A. Magrenan, 2015. Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order. J. Comput. Applied Math., 282: 215-224.
    CrossRef  |  Direct Link  |  
  154. Argyros, I.K., S. George and A.A. Magrenan, 2015. Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in Banach spaces. J. Korean Math. Soc., 52: 23-41.
  155. Argyros, I.K., P. Jidesh and S. George, 2015. Local convergance of super-halley type methods with fourth-order of convergance under week conditions. EPAM., 2: 1-11.
  156. Argyros, I.K., P. Jidesh and S. George, 2015. An improved semilocal convergence analysis for a three point method of order 1.839 in Banach space. Adv. Nonlinear Variat. Inequal., 18: 23-32.
  157. Argyros, I.K. and S.George, 2015. Local convergence of optimal fourth order methods without memory under hypotheses only up to the first derivatives. Trans. Math. Program. Applic 3: 1-12.
  158. Argyros, I.K. and S. George, 2015. The convergence ball of inexact newton-like method in banach space under weak lipshitz condition. Convergence, 28: 1-12.
  159. Argyros, I.K. and S. George, 2015. On the local convergence of a Sharma-type optimal eighth-order method. EPAM., 1: 63-78.
  160. Argyros, I.K. and S. George, 2015. On a sixth-order Jarratt-type method in Banach spaces. Asian-Eur. J. Math., Vol. 8. 10.1142/S1793557115500655.
    CrossRef  |  Direct Link  |  
  161. Argyros, I.K. and S. George, 2015. On a local characterization of some newton-like methods of R-order at least three under weak conditions in banach spaces. J. Chungcheong Math. Soc., 28: 513-523.
    Direct Link  |  
  162. Argyros, I.K. and S. George, 2015. Local convergence of modified Halley-like methods with less computation of inversion. Novi Sad J. Math., 45: 47-58.
  163. Argyros, I.K. and S. George, 2015. Local convergence of a uniparametric Halley-type method in Banach space free of second derivative. ANVI., 18: 48-57.
  164. Argyros, I.K. and S. George, 2015. Local convergence of a multi-point Jarratt-type method in Banach space under weak conditions. J. Nonlinear Anal. Optimiz., 6: 43-52.
  165. Argyros, I.K. and S. George, 2015. Local convergence for deformed Chebyshev-type method in Banach space under weak conditions. Cogent Math., Vol. 2. 10.1080/23311835.2015.1036958.
    CrossRef  |  Direct Link  |  
  166. Argyros, I.K. and S. George, 2015. Local convergence for a regula falsi-type method under weak convergence. J. Applied Computat. Math., Vol. 4. 10.4172/2168-9679.1000217.
    CrossRef  |  
  167. Argyros, I.K. and S. George, 2015. Iterative regularization methods for nonlin-ear Ill-posed operator equations with M-accretive mappings in banach spaces. Acta Math. Scind., 35: 1318-1324.
  168. Argyros, I.K. and S. George, 2015. Expanding the convergence domain of newton-like methods and applications in banach space. J. Math., Vol. 47. .
    Direct Link  |  
  169. Argyros, I.K. and S. George, 2015. Expanding the applicability of ste ensen's method for nding xed point of operators in Banach space. Serdica Math. J., 41: 159-184.
  170. Argyros, I.K. and S. George, 2015. Enlarging the convergence ball of the method of parabola for finding zero of derivatives. Applied Math. Comput., 256: 68-74.
  171. Argyros, I.K. and S. George, 2015. Ball convergence theorems for uni ed three step Newton-like methods of high convergence order. Nonlinear Stud., 22: 327-339.
  172. Argyros, I.K. and S. George, 2015. Ball convergence theorems for for King's fourth-order iterative methods under weak conditions. Nonlinear Funct. Anal. Applic., 20: 419-428.
  173. Argyros, I.K. and S. George, 2015. Ball convergence theorems for eighth-order variants of Newton's method under weak conditions. Arabian J. Math., 4: 81-90.
    CrossRef  |  Direct Link  |  
  174. Argyros, I.K. and S. George, 2015. Ball convergence theorem for Hansen-Patrick-type methods with third and fourth order of convergence under weak conditions. EPAM., 1: 1-16.
  175. Argyros, I.K. and S. George, 2015. Ball convergence for variants of Jarratt's method. Bangmod Int. J. Math. Comput. Sci., 1: 33-39.
  176. Argyros, I.K. and S. George, 2015. Ball convergence for some ecient iterative methods. EPAM., 1: 47-62.
  177. Argyros, I.K. and S. George, 2015. Ball convergence for higher order methods under weak conditions. J. Math. Study, 48: 362-3748.
  178. Argyros, I.K. and S. George, 2015. Ball convergence for a ninth order Newton-type method from quadrature and adomian formulae in Banach space. NFAA., 20: 595-608.
  179. Argyros, I.K. and S. George, 2015. Ball convergence for a Newton-steensen-type third-order method. Adv. Nonlinear Variat. Inequal., 18: 34-45.
  180. Argyros, I.K. and S. George, 2015. Ball convergence for Traub-Steffensen like methods in Banach space. Ann. W. Univ. Timisoara-Mathematics Comput. Sci., 53: 3-16.
    Direct Link  |  
  181. Argyros, I.K. and S. George, 2015. Ball convergence for Stevensen-type fourth-order methods. Int. J. Artif. Intelli. Interact. Multimedia, 3: 37-42.
  182. Argyros, I.K. and S. George, 2015. Ball convergence comparison between three iterative methods in Banach space under hypothese only on the first derivative. Applied Math. Comput., 266: 1031-1037.
    CrossRef  |  Direct Link  |  
  183. Argyros, I.K. and S. George, 2015. Ball comparison for variants of Chebyshev's method with third or fourth order of convergence. Bangmod Int.J. Math. Comput. Sci., 1: 233-243.
    Direct Link  |  
  184. Argyros, I.K. and S. George, 2015. A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions. Studia Univ. Babes-Bolyai, Math., 60: 463-470.
    Direct Link  |  
  185. Argyros, I.K. and S. George, 2015. A ball comparison between three cubically convergent iterative methods. Trans. Math. Program. Applic., 3: 24-34.
  186. Argyros, I.K. and D. Gonzalez, 2015. Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under majorant and center-majorant condition. SeMA J., 69: 37-51.
    CrossRef  |  Direct Link  |  
  187. Argyros, I.K. and S. George, 2015. Ball comparison between two optimal eight-order methods under weak conditions. SeMA J., 72: 1-11.
    CrossRef  |  Direct Link  |  
  188. Argyros, I. and S. George, 2015. Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions. Applic. Math., 2: 193-203.
    CrossRef  |  Direct Link  |  
  189. Argyros, I. and S. George, 2015. Improved local convergence analysis of inexact Newton-like methods under the majorant condition. Applic. Math., 4: 343-357.
  190. Vasin, V. and S. George, 2014. Expanding the applicacability of Tikhonov's regularization and iterative approximation for ill-posed problems. J. Inverse Ill-Posed Prob., 22: 593-607.
    CrossRef  |  Direct Link  |  
  191. Vasin, V. and S. George, 2014. An analysis of lavrentiev regularization method and Newton type process for nonlinear illposed problems. Appl. Math. Comput., 230: 406-413.
    CrossRef  |  Direct Link  |  
  192. Shobha, M.E., S. George and M. Kunhanan-dan, 2014. A two step Newton type iteration for ill-posed Hammerstein type operator equations in Hilbert scales. J. Intgr. Equations Appl., 26: 91-116.
    CrossRef  |  Direct Link  |  
  193. Shobha, M.E., I.K. Argyros and S. George, 2014. Newton-type it-erative methods for nonlinear ill-posed Hammerstein-type equations. Appl. Math., 41: 107-129.
    CrossRef  |  Direct Link  |  
  194. Shobha, M.E. and S. George, 2014. Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. J. Math., 2014: 1-9.
    CrossRef  |  Direct Link  |  
  195. George, S. and M.E. Shobha, 2014. Newton type iteration for Tikhonov reg-ularization of non-linear ill-posed Hammerstein type equations. J. Appl. Math. Comput., 44: 69-82.
    Direct Link  |  
  196. George, S. and I.K. Argyros, 2014. On the semilocal convergence of modied Newton-Tikhonov regularization method for nonlinear ill-posed problems. Nonlinear Funct. Anal. Appl., 19: 99-111.
  197. George, S. and I.K. Argyros, 2014. On a deformed Newtons method with third order of convergence under the condition. Adv. Appl. Math. Sci., 13: 1-18.
  198. George, S. and I.K. Argyros, 2014. Expanding the applicability of the Gauss-Newton method for convex optimization under a regularity condition. CANA, 21: 29-44.
  199. Argyros, I.K., Y.J. Cho and S. Georeg, 2014. On the terra incognita for the NewtonKantrovich method with applications. J. Korean Math. Soc., 51: 251-266.
    Direct Link  |  
  200. Argyros, I.K., S. George and P. Jidesh, 2014. Inverse free iterative methods for nonlinear ill-posed operator equations. Int. J. Math. Math. Sci., 2014: 1-8.
    CrossRef  |  Direct Link  |  
  201. Argyros, I.K., S. George and M.E. Shobha, 2014. Weak convergence of iterated lavrentiev regularization for nonlinear Ill-posed prob-lems. Trans. Math. Program. Applic., 2: 1-16.
  202. Argyros, I.K., S. George and M. Kunhanandhan, 2014. An iterative regularization methods for ill-posed Hammerstein type operator equations in Hilbert scale. Stud. UBB Math., 59: 247-262.
    Direct Link  |  
  203. Argyros, I.K., P. Jidesh and S. George, 2014. Ball convergence for fourteenth order iterative methods under conditions only on the rst derivative. Trans. Math. Program. Applic., 2: 1-12.
  204. Argyros, I.K., M.E. Shobha and S. George, 2014. Expanding the applicability of a two step newton-type pro-jection method for ill-posed problems. Funct. Approx. Comment. Math., 51: 141-166.
    Direct Link  |  
  205. Argyros, I.K. and S. George, 2014. Unified ball convergence for two-step iterative methods in Banach space. Trans. Math. Program. Applic., 2: 26-36.
  206. Argyros, I.K. and S. George, 2014. On the semilocal convergence of Newton's method for sections on Riemannian manifolds. Asian-Eur. J. Math., 07: 1-17.
    CrossRef  |  Direct Link  |  
  207. Argyros, I.K. and S. George, 2014. On the convergence of the kurchatov method under weak condition. Trans. Math. Pro-gramming Appl., 2: 1-12.
  208. Argyros, I.K. and S. George, 2014. On extended convergence do-mains for the Newton-kantorovich method Math. Tome, 56: 3-13.
    Direct Link  |  
  209. Argyros, I.K. and S. George, 2014. Local convergence of two competing third order methods in banach space. Appl. Math., 41: 341-350.
    CrossRef  |  Direct Link  |  
  210. Argyros, I.K. and S. George, 2014. Local convergence of a multi-point-parameter Newton-like methods in Banach space. Nonlinear Funct. Anal. Appl., 19: 381-392.
    Direct Link  |  
  211. Argyros, I.K. and S. George, 2014. Expanding the applicability of Tikhonov's regularization for nonlinear ill-posed problems. Math. Inverse Prob., 1: 86-100.
  212. Argyros, I.K. and S. George, 2014. Expanding the applicability of Newton-Tikhonov method for ill-posed equations. Rev. Anal. Numér. Théor. Approx., 433: 141-158.
    Direct Link  |  
  213. Argyros, I.K. and S. George, 2014. Expanding the applicability of Lavrentiev regularization methods for ill-posed equations under general source condition. Nonlinear Funct. Anal. Appl., 19: 177-192.
  214. Argyros, I.K. and S. George, 2014. Aunied local convergence for three-step iterative methods with optimal eight order of convergence under weak conditions Trans. Math. Program. Applic., 2: 13-25.
  215. Argyros, I.K. and S. George, 2014. An analysis of lavrentiev regu-larization methods and newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations. Adv. Nonlinear Varia-tional Inequalities, 17: 26-42.
  216. Argyros, I.K. and S. George, 2014. Regularization methods for ill-posed problems with monotone nonlinear part. PUJM, 46: 25-38.
    Direct Link  |  
  217. Shobha, M.E. and S. George, 2013. Projection method for Newton-Tikhonov regularization for non-linear ill-posed Hammerstein type operator equations. Int. J. Pure Appl. Math., 83: 643-650.
    CrossRef  |  Direct Link  |  
  218. Shobha, M.E. and S. George, 2013. On improving the semilocal convergence of newton-type iterative method for Ill-posed ham-merstein type operator equations. IAENG, Int. J. Appl. Math., 43: 64-70.
    Direct Link  |  
  219. George, S., 2013. Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems. J. Math. 10.1155/2013/439316.
    CrossRef  |  Direct Link  |  
  220. George, S. and I.K. Argyros, 2013. Tikhonovs regularization and a cubic convergent iterative approximation for nonlinear ill-posed problems. Adv. Appl. Math. Sci., 12: 435-486.
  221. Georeg, S., S. Pareth and M. Kunhanandan, 2013. Newton lavrentiev regularization for ill-posed operator equations in Hilbert scales. Applied Math. Comput., 219: 11191-11197.
    CrossRef  |  Direct Link  |  
  222. Georeg, S. and S. Pareth, 2013. An application of Newton-type iterative method for the approximate implementation of Laventiev regularization. J. Appl. Anal., 19: 181-196.
    CrossRef  |  Direct Link  |  
  223. Argyros, I.K., Y.J. Cho and S. Georeg, 2013. Expanding the applicability of lavrentiev regularization methods for ill-posed problems. Boundary Value Prob., 2013: 114-114.
    CrossRef  |  Direct Link  |  
  224. Argyros, I.K. and S. Hilout, 2013. Extending the applicability of the mesh independence principle for solving nonlinear equations. Trans. Math. Program. Applied, 1: 15-26.
  225. Argyros, I.K. and S. George, 2013. On the semilocal convergence of a two-step Newton-like projection method for ill-posed equations. Appl. Math., 40: 367-382.
    CrossRef  |  Direct Link  |  
  226. Argyros, I.K. and S. George, 2013. Modification of the kantorovich-type conditions for newton's method involving twice frechet differentiable operators. Asian-Eur. J. Mathem., Vol. 6. 10.1142/S1793557113500265.
    CrossRef  |  Direct Link  |  
  227. Argyros, I.K. and S. George, 2013. Improved local convergence of lavrentiev regularization for ill-posed equations. Trans. Math. Programming Appl., 1: 65-76.
  228. Argyros, I.K. and S. George, 2013. Extending the applicability of Newtons method on riemannian manifolds with values in a cone. Asian-Eur. J. Math., 6: 1-15.
    CrossRef  |  Direct Link  |  
  229. Argyros, I.K. and S. George, 2013. Expanding the applicability of a two step newton lavrentiev method for Ill-posed problems. J. Nonlinear Anal. Optim.: Theory Applic., 4: 1-15.
    Direct Link  |  
  230. Argyros, I.K. and S. George, 2013. Expanding the applicability of a sim-pli ed Newton-Tikhonov regularization method for ill-posed equations. Trans. Math. Programming Appl., 1: 75-85.
  231. Argyros, I.K. and S. George, 2013. Expanding the applicability of a newton-Lavrentiev regularization method for ill-posed problems. Math. Tome, 55: 103-111.
    Direct Link  |  
  232. Argyros, I.K. and S. George, 2013. Expanding the applicability of a Modified Gauss-Newton method for solving nonlinear ill-posed problems. Appl. Math. Comput., 219: 10518-10526.
    CrossRef  |  Direct Link  |  
  233. Argyros, I.K. and S. George, 2013. Chebyshev-kurchatov-type methods for solving equations with non-di erentiable operators. Nonlinear Funct. Anal. Appl., 18: 421-432.
    Direct Link  |  
  234. Argyros, I.K. and S. George, 2013. An extension of a theorem by B.T. polyak on gradient-type methods. Nonlinear Funct. Anal. Appl., 18: 411-420.
  235. Argyros, I.K. and H. Ren, 2013. Efficient steffensen-type algorithms for solving nonlinear equations. Int. J. Comput. Mathemat., 90: 691-704.
    CrossRef  |  Direct Link  |  
  236. Shobha, M.E. and S. George, 2012. Dynamical system method for ill-posed hammerstein type operator equations with monotone operators. Int. J. Pure Appl. Math., 81: 129-143.
    Direct Link  |  
  237. Jidesh, P. and S. George, 2012. Schock coupled fourth-order di usion for image enhancement. Comput. Electr. Eng., 38: 1262-1277.
    CrossRef  |  Direct Link  |  
  238. Jidesh, P. and S. George, 2012. Gauss curvature driven image inpainting for image reconstruction. J. Chin. Inst. Eng., 37: 122-133.
    CrossRef  |  Direct Link  |  
  239. Jidesh, P. and S. George, 2012. Fourth-order gauss curvature driven di usion for image denoising. Int. J. Comp. Elect. Eng., 4: 350-354.
    CrossRef  |  Direct Link  |  
  240. Jidesh, P. and S. George, 2012. A time-dependent switching anisotropic di usion model for denoising and deblurring images. J. Modern Optics, 59: 140-156.
    CrossRef  |  Direct Link  |  
  241. George, S. and S. Pareth, 2012. Two step newton method fornon-linear lavrentiev regularization. ISRN Applied Math., 2012: 1-22.
    CrossRef  |  Direct Link  |  
  242. George, S. and S. Pareth, 2012. An application of Newton type iterative method for Laverentiev regularization for ill-posed equations: Finite dimensional realization. IAENG, Int. J. Appl. Math., 42: 164-170.
    Direct Link  |  
  243. George, S. and M.E. Shobha, 2012. Two step newton-tikhonov method for hammerstein-type equations: Finite dimensional realization. ISRN Applied Math., 2012: 1-22.
    CrossRef  |  Direct Link  |  
  244. George, S. and A.I. Elmahdy, 2012. A quadratic convergence yielding iterative method for nonlinear ill-posed operator equations. Comput. Methods Appl. Math., 12: 32-45.
    Direct Link  |  
  245. Jidesh, P. and S. George, 2011. Fourth-order variational model with local-constraints for denoising images with textures. Int. J. Comput. Vision Rob., 2: 330-340.
    CrossRef  |  Direct Link  |  
  246. Jidesh, P. and S. George, 2011. Curvature driven diffusion coupled with shock for image enhancement/reconstruction. Int. J. Signal Imaging Syst. Eng., 4: 238-247.
    CrossRef  |  Direct Link  |  
  247. Jidesh, P. and S. George, 2011. Adaptive multi-model biometric fusion for digital watermarking. IJCSI., 8: 282-289.
  248. George, S. and P. Jidesh, 2011. Reconstruction of signals by standard Tikhonov method. Applied Math. Sci., 5: 2819-2829.
    Direct Link  |  
  249. George, S. and M.E. Shobha, 2011. A regularized dynamical system method for nonlinear ill-posed hammerstein type operator equations. J. Appl. Math. Bioinf., 1: 65-78.
    Direct Link  |  
  250. George, S., 2010. On convergence of regularized modified Newton's method for nonlinear ill-posed problems. J. Inverse Ill-Posed Prob., 18: 133-146.
    CrossRef  |  
  251. George, S. and M. Kunhanandan, 2010. Iterative regularization methods for ill-posed Hammerstein type operator equation with monotone nonlinear part. Int. J. Math. Anal., 4: 1673-1685.
    Direct Link  |  
  252. George, S. and A.I. Elmahdy, 2010. An iteratively regularized projection method with quadratic convergence for nonlinear ill-posed problems. Int. J. Contem. Math. Sci., 4: 2211-2228.
    CrossRef  |  Direct Link  |  
  253. George, S. and A.I. Elmahdy, 2010. An iteratively regularized projection method for nonlinear ill-posed problems. Int. J. Math. Anal., 5: 2547-2565.
    Direct Link  |  
  254. George, S. and A.I. Elmahdy, 2010. An analysis of Lavrentiev regularization for nonlinear ill-posed problems using an iterative regularization method. Int. J. Comput. Appl. Math., 5: 369-381.
  255. George, S. and M. Kunhanandan, 2009. An iterative regularization method for Ill-posed hammerstein type operator equations. J. Inverse Ill-Posed Prob., 17: 831-844.
    CrossRef  |  Direct Link  |  
  256. George, S., 2008. Monotone error rule for tikhonov regularization in hilbert scales. J. Anal., 16: 1-9.
  257. George, S. and M.T. Nair, 2008. A modified newton-lavrentiev regularization for nonlinear ill-posed hmmerstein operator equations. J. Complexity, 24: 228-240.
    CrossRef  |  Direct Link  |  
  258. George, S., 2006. Newton-tikhonov regularization of ill-posed hammerstein operator equation. J. Inverse Ill-Posed Prob., 14: 135-145.
  259. George, S., 2006. Newton-lavrentiev regularization of ill-posed hammerstein type operator equation. J. Inverse Ill-Posed Prob., 14: 573-582.
    CrossRef  |  Direct Link  |  
  260. George, S. and M.T. Nair, 2004. An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in hilbert scales: Finite dimensional realizations. Int. J. Math. Math. Sci., 37: 1973-1996.
  261. George, S. and M.T. Nair, 2003. An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in hilbert scales. Int. J. Math. Math. Sci., 2003: 2487-2499.
    CrossRef  |  Direct Link  |  
  262. George, S. and M.T. Nair, 1998. On a generalized arcangelis method for tikhonov regularization with inexact data. J. Numer. Funct. Anal. Optimiz., 19: 773-787.
    CrossRef  |  Direct Link  |  
  263. George, S. and M.T. Nair, 1997. Error bounds and parameter choice strategies for simplified regularization in Hilbert scales. Integr. Equations Operator Theory, 29: 231-242.
    Direct Link  |  
  264. George, S. and M.T. Nair, 1994. Parameter choice by discrepancy princi-pals for ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl., 83: 217-222.
    Direct Link  |  
  265. George, S. and M.T. Nair, 1994. A class of discrepancy principals for the simplified regularization. J. Aust. Math. Soc. Ser. B, 36: 242-248.
    CrossRef  |  Direct Link  |  
  266. George, S. and M.T. Nair, 1993. An apostoriori parameter choice for simplified regularization of ill-posed problems. Integr. Equations Operator Theory, 16: 392-399.
    Direct Link  |