Dr. Tanveer Ahmad Tarray
My Social Links

Dr. Tanveer Ahmad Tarray

Assistant Professor
Islamic University of Science and Technology, India


Highest Degree
Ph.D. in Statistics from Vikram University, India

Share this Profile



Advertisement
Event

Biography

Dr. Tanveer Ahmad Tarray is currently working as Research Scholar. He obtained his Ph.D. in Statistics from Vikram University, India. His area of expertise includes Statistics, Sampling Technique, and Randomized Response Technique. He has published 5 articles in journals, 3 in proceeding and 7 accepted for publication.

Area of Interest:

Bayesian Inference
100%
Survery Sampling
62%
Randomized Response Technique
90%
Optimization Techniques
75%
Statistical Modeling
55%

Research Publications in Numbers

Books
2
Chapters
0
Articles
61
Abstracts
2

Selected Publications

  1. Tarray, T.A. and H.P. Singh, 2018. A randomization device for estimating a rare sensitive attribute in stratified sampling using Poisson distribution. Afrika Matematika, 29: 407-423.
    CrossRef  |  Direct Link  |  
  2. Tarray, T.A., 2017. Scrutinize on Stratified Randomized Response Technique. GRIN Verlag, Munich, ISBN: 9783668554580.
  3. Tarray, T.A., 2017. Gestalt on Randomized Response Technique in Survey Sampling. In: Different Slants Concerning Applied Mathematics and Statistics, Tarray, T.A. (Ed.)., Lambert Academic Publishing, Germany, ISBN: 978-620-2-01852-4.
  4. Tarray, T.A., 2017. A New Approach to the Theory of Randomized Response Technique in Survey Sampling. In: Several Inclines regarding Applied Mathematics, Bhat, A.A. (Ed.)., Lambert Academic Publishing, Germany, ISBN: 978-3-659-87174-0.
  5. Tarray, T.A., 2017. A New Approach to the Theory of Randomized Response Technique Applying Branch and Bound. In: Copious Slopes Concerning Realistic Mathematics, Ganie, J.A. (Ed.)., Lulu Publishers, USA., ISBN: 9781387197774.
  6. Tarray, T.A. and H.P. Singh, 2017. An optional randomized response model for estimating a rare sensitive attribute using Poisson distribution. Commun. Stat. - Theory Methods, 46: 2638-2654.
    CrossRef  |  
  7. Tarray, T.A. and H.P. Singh, 2017. An adept-stratified Kuk’s randomized response model using Neyman allocation. Commun. Stat.-Theory Methods, 46: 2870-2881.
    CrossRef  |  Direct Link  |  
  8. Tarray, T.A. and H.P. Singh, 2017. A survey technique for estimating the proportion and sensitivity in a stratified dichotomous finite population. Statist. Applic., 15: 173-191.
    Direct Link  |  
  9. Tarray, T.A. and H.P. Singh, 2017. A stratified unrelated question randomized response model using Neyman allocation. Commun. Statist.-Theory Methods, 46: 17-27.
    CrossRef  |  Direct Link  |  
  10. Singh, H.P., S.M. Gorey and T.A. Tarray, 2017. A stratified randomized response model for sensitive characteristics using geometric distribution of order K. Statist. Applic., 15: 147-160.
    Direct Link  |  
  11. Singh, H.P. and T.A. Tarray, 2017. An efficient use of moment’s ratios of scrambling variables in a randomized response technique. Commun. Stat. Theory Methods, 46: 521-531.
    CrossRef  |  Direct Link  |  
  12. Singh, H.P. and T.A. Tarray, 2017. A stratified randomized response model for sensitive characteristics using the negative hyper geometric distribution. Commun. Stat. - Theory Methods, 46: 2607-2629.
    CrossRef  |  
  13. Singh, H.P. and T.A. Tarray, 2017. A Two - Stage Land et al.’s randomized response model for estimating a rare sensitive attribute using Poisson distribution. Commun. Stat. Theory Methods, 46: 389-405.
    CrossRef  |  Direct Link  |  
  14. Tarray, T.A., 2016. Statistical Sample Survey Methods and Theory. 1st Edn., Elite Publishers, New Delhi, India., ISBN: 978-93-86163-07-03, Pages: 260.
  15. Tarray, T.A. and H.P. Singh, 2016. Role of weights in improving the efficiency of Kim and Warde’s mixed randomized response model. Commun. Stat. Theory Methods, 45: 1014-1030.
    CrossRef  |  Direct Link  |  
  16. Tarray, T.A. and H.P. Singh, 2016. New procedures of estimating proportion and sensitivity using randomized response in a dichotomous finite population. J. Modern Applied Statist. Methods, 15: 635-669.
    CrossRef  |  Direct Link  |  
  17. Tarray, T.A. and H.P. Singh, 2016. An adroit randomized response new additive scrambling model. Gazi Univ. J. Sci., 29: 159-165.
    Direct Link  |  
  18. Tarray, T.A. and H.P. Singh, 2016. A modified optimal orthogonal new additive model (AMOONAM). Commun. Stat. Theory Methods, 45: 6663-6669.
    CrossRef  |  Direct Link  |  
  19. Tarray T.A. and H.P. Singh, 2016. New scrambling randomized response models. Jord. Jour. Math. Statist., 9: 1-15.
  20. Singh, H.P., J.M. Kim and T.A. Tarray, 2016. A family of estimators of population variance in two occasion rotation patterns. Commun. Stat. Theory Methods, 45: 4106-4116.
    CrossRef  |  Direct Link  |  
  21. Singh, H.P. and T.A. Tarray, 2016. An improved BAR-LEV, bobovitch and boukai randomized response model using moments ratios of scrambling variable. Hacettepe J. Math. Statist., 45: 593-608.
    Direct Link  |  
  22. Singh, H.P. and T.A. Tarray, 2016. An efficient new “partial” randomized response model. Commun. Stat. Theory Methods, 45: 6611-6624.
    CrossRef  |  Direct Link  |  
  23. Singh, H.P. and T.A. Tarray, 2016. A stratified Tracy and Osahan`s two - stage randomized response model. Commun. Stat. Theory Methods, 45: 3126-3137.
    CrossRef  |  Direct Link  |  
  24. Singh, H.P. and T.A. Tarray 2016. A sinuous stratified unrelated question randomized response model. Commun. Stat. Theory Methods, 45: 6510-6520.
    CrossRef  |  Direct Link  |  
  25. Tarray, T.A., H.P. Singh and Y. Zaizai, 2015. A Dexterous optional randomized response model. Sociological Methods Res., 10.1177/0049124115605332.
    CrossRef  |  Direct Link  |  
  26. Tarray, T.A. and H.P. Singh, 2015. Some improved additive randomized response models utilizing higher order moments ratios of scrambling variable. Model Assist. Stat. Applic., 10: 361-383.
    CrossRef  |  Direct Link  |  
  27. Tarray, T.A. and H.P. Singh, 2015. An adroit Singh and Mathur`s randomization device for estimating a rare sensitive attribute using Poisson distribution. J. Reliab. Stat. Stud., 8: 69-76.
    Direct Link  |  
  28. Tarray, T.A. and H.P. Singh, 2015. An Endowed Optional Stratified Unrelated Question Randomized Response Model. In: Statistics and Informatics in Agricultural Research, Sud, U., H. Chandra, L. Bhar and S. Sarkar (Eds.). Excel India Publishers, New Delhi, India., ISBN: 978-93-84899-8-4, pp 17-27.
  29. Tarray, T.A. and H.P. Singh, 2015. A stratified randomized response model for sensitivity characteristics using negative binomial distribution. Investigacion Operacionel, 36: 268-279.
    Direct Link  |  
  30. Tarray, T.A. and H.P. Singh, 2015. A randomized response model for estimating a rare sensitive attribute in stratified sampling using Poisson distribution. Model Assist. Statist. Applic., 10: 345-360.
    CrossRef  |  Direct Link  |  
  31. Tarray, T.A. and H.P. Singh, 2015. A general procedure for estimating the mean of a sensitive variable using auxiliary information. Investigacion Operacionel, 36: 249-279.
  32. Singh, H.P., R. Goli and T.A. Tarray, 2015. Study of Yadav and Kadilar`s improved exponential type ratio estimator of population variance in two-phase sampling. Hacettepe J. Math. Stat., 44: 1257-1270.
    Direct Link  |  
  33. Singh, H.P., M.K. Srivastava, N. Srivastava, T.A. Tarray, V. Singh and S. Dixit, 2015. Chain regression-type estimator using multiple auxiliary information in successive sampling. Hacettepe J. Math. Stat., 44: 1247-1256.
    Direct Link  |  
  34. Singh, H.P. and T.A. Tarray, 2015. Two-stage stratified partial randomized response strategies. Commun. Stat.-Theory Methods. 10.1080/03610926.2013.804571.
    CrossRef  |  Direct Link  |  
  35. Singh, H.P. and T.A. Tarray, 2015. On the use of randomization device for estimating the proportion and truthful reporting of a qualitative sensitive attribute. Pak. J. Stat. Oper. Res., 11: 29-40.
    Direct Link  |  
  36. Singh, H.P. and T.A. Tarray, 2015. An optional randomized response model for estimating a rare sensitive attribute using Poisson distribution. Commun. Stat. Theory Methods, 10.1080/03610926.2015.1040506.
    CrossRef  |  Direct Link  |  
  37. Singh, H.P. and T.A. Tarray, 2015. An adept stratified kuk`s randomized response model using neyman allocation. Commun. Stat. Theory Methods, 10.1080/03610926.2015.1053933.
    CrossRef  |  Direct Link  |  
  38. Singh, H.P. and T.A. Tarray, 2015. A stratified randomized response model for sensitive characteristics using the negative hyper geometric distribution. Commun. Stat. Theory Methods, 10.1080/03610926.2015.1010007.
    CrossRef  |  Direct Link  |  
  39. Singh, H.P. and T.A. Tarray, 2015. A revisit to the Singh, Horn, Singh and Mangat’s randomization device for estimating a rare sensitive attribute using Poisson distribution. Model Assist. Statist. Appl., 10: 129-138.
    CrossRef  |  Direct Link  |  
  40. Sing, H.P., N. Sharma and T.A. Tarray, 2015. An efficient class of two-phase exponential ratio and product - type estimators for estimating the finite population mean. J. Stat. Appl. Prob., 2: 71-88.
    CrossRef  |  Direct Link  |  
  41. Hussain, Z., M.M. Al-Sobhi, B. Al-Zahrani, H.P. Singh and T.A. Tarray, 2015. Improved randomized response approaches for additive scrambling models. Math. Popul. Stud., 23: 205-221.
    CrossRef  |  Direct Link  |  
  42. Tarray, T.A. and H.P. Singh, 2014. A Proficient randomized response model. Istatistika J. Turkey Statist. Assoc., 7: 87-98.
  43. Singh, H.P. and T.A. Tarray, 2014. An improvement randomized response additive model. Sri. J. Appl. Stat., 15: 131-138.
    CrossRef  |  Direct Link  |  
  44. Singh, H.P. and T.A. Tarray, 2014. An improvement over Kim and Elam stratified unrelated question randomized response model using neyman allocation. Sankhya B, 77: 91-107.
    CrossRef  |  Direct Link  |  
  45. Singh, H.P. and T.A. Tarray, 2014. An improved mixed randomized response model. Model Assisted Stat. Appl., 9: 73-87.
    Direct Link  |  
  46. Singh, H.P. and T.A. Tarray, 2014. An efficient alternative mixed randomized response procedure. Sociological Methods Res., 44: 706-722.
    CrossRef  |  Direct Link  |  
  47. Singh, H.P. and T.A. Tarray, 2014. An alternative to stratified Kim and Warde's randomized response model using optimal (Neyman) allocation. Model Assisted Stat. Appl., 9: 37-62.
    Direct Link  |  
  48. Singh, H.P. and T.A. Tarray, 2014. An alternative estimator in stratified RR strategies. J. Reliab. Stat. Stud., 7: 105-118.
    Direct Link  |  
  49. Singh, H.P. and T.A. Tarray, 2014. An adroit stratified unrelated question randomized response model using Neyman allocation. Sri. J. Appl. Stat., 15: 83-90.
    CrossRef  |  Direct Link  |  
  50. Singh, H.P. and T.A. Tarray, 2014. A stratified Mangat and Singh`s optional randomized response model using proportional and optimal allocation. Statistica, 74: 65-83.
    Direct Link  |  
  51. Singh, H.P. and T.A. Tarray, 2014. A modified mixed randomized response model. Stat. Transition Ser., 15: 67-82.
  52. Singh, H.P. and T.A. Tarray, 2014. A dexterous randomized response model for estimating a rare sensitive attribute using Poisson distribution. Stat. Probab. Lett., 90: 42-45.
    CrossRef  |  Direct Link  |  
  53. Singh, H.P. and T.A. Tarray, 2013. An alternative to Kim and Warde's mixed randomized response technique. Stataistica, 73: 379-402.
    CrossRef  |  Direct Link  |  
  54. Singh, H.P. and T.A. Tarray, 2013. An alternative to Kim and Warde's mixed randomized response model. Statist. Operat. Res. Trans., 37: 189-210.
    Direct Link  |  
  55. Singh, H.P. and T.A. Tarray, 2013. A modified survey technique for estimating the proportion and sensitivity in a dichotomous finite population. Int. J. Adv. Sci. Tech. Res., 3: 459-472.
  56. Singh, H.P. and T.A. Tarray, 2012. A stratified unknown repeated trials in randomized response sampling. Commun. Stat. Applic. Methods, 19: 751-759.
    CrossRef  |  Direct Link  |