# Dr. Deepak Kumar

ProfessorManav Rachna International University, India

**Highest Degree**

Ph.D. in Mathematics from Dr. Bhim Rao Ambedkar Universty, India

**Share this Profile**

Manav Rachna International University, India

**Highest Degree**

Ph.D. in Mathematics from Dr. Bhim Rao Ambedkar Universty, India

**Share this Profile**

100%

Mathematical Modeling

62%

Applied Mathematics

90%

Numerical Analysis

75%

Mathematical Applications

55%

Books

1

1

Chapters

3

3

Articles

32

32

Abstracts

3

3

- Sandhya and D. Kumar, 2019. Model for gestational diabetes on web based parameters. Recent Patents Eng., 13: 48-54.

CrossRef | Direct Link | - Khurana, P., D. Kumar and S. Kumar, 2019. Research of fake news spreading through Whatsapp. Int. J. Innov. Technol. Exploring Eng., 8: 948-951.

CrossRef | Direct Link | - Khurana, P., D. Kumar and S. Kumar, 2019. A differential equation model for social networks using internet. FIRMS's Int. J. Math. Sci., 1: 24-30.

Direct Link | - Khurana, P. and D. Kumar, 2018. Application of matrix for hospital dietary services. Int. J. Scient. Eng. Applied Sci., 4: 84-90.

Direct Link | - Kumar, D., V. Kumar and P. Khurana, 2017. Mathematical Models on Communicable Diseases. Lambert Academic Publishers, Germany, ISBN: 978-3-659-59492-2, Pages: 112.
- Gupta, R. and D. Kumar, 2017. Numerical model for glucose metabolism for various types of food and effect of physical activities on type 1 diabetic patient. Applied Math., 7: 19-22.

CrossRef | Direct Link | - Gupta, R. and D. Kumar, 2017. Hypertension and coronary heart disease risks for a type II diabetic patient with or without intake of alcohol: A mathematical model. Adv. Sci. Eng. Med., 9: 709-712.

CrossRef | Direct Link | - Singh, S. and D. Kumar, 2016. Mathematical model on glucose-insulin regulatory system with the impact of physical activities. Comput. Math. Biol., 5: 5-8.

Direct Link | - Kumari, N. and D. Kumar, 2016. Students' perspective (stream wise) of parameters affecting the undergraduate engineering education: A live study. East Asian J. Bus. Manage., 6: 25-30.

CrossRef | Direct Link | - Kumar, D. and V.K. Bais, 2016. Mathematical model on influenza disease with re-susceptibility. Aust. J. Basic Applied Sci., 10: 177-182.

Direct Link | - Sandhya and D. Kumar, 2015. A statistical computation with the impact of physical activities for risk factor (BMI) in diabetes mellitus. Int. J. Eng. Technol. Manage. Applied Sci., 3: 376-379.
- Kumar, V. and D. Kumar, 2015. Some mathematical models for epidemiology. Int. J. Scient. Eng. Res., 6: 1055-1057.

Direct Link | - Gupta, R. and D. Kumar, 2015. Finding the important but neglected parameters in diabetes mellitus. Int. J. Comput. Math. Sci., 4: 120-123.
- Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2015. Mathematical modelling for chemotherapy of tumor growth with aspect of biological stoichiometry. Global J. Pure Applied Math., 4: 2581-2587.
- Bais, V.K. and D. Kumar, 2015. SITR dynamical model for influenza. Int. J. Eng. Technol. Sci. Res., 2: 76-79.
- Shekhar, K., A.P. Tyagi, A. Saxena and D. Kumar, 2014. Analysis of an exponential slider bearing under highly loaded conditions of human knee joint: Pure rolling case. Int. J. Applied Eng. Res., 9: 8543-8553.
- Kumari, N. and D. Kumar, 2014. Students' perspective of parameters affecting the quality of education in undergraduate engineering institution based on factor analysis/loadings. Entrepreneursh. Innov. Manage. J., 2: 8-21.

Direct Link | - Kumar, D., 2014. A mathematical model of chemotherapeutic drug for tumor treatment. Indian J. Applied Res., 4: 7-10.

Direct Link | - Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2014. Mathematical model solid tumor at the stage of angiogenesis with immune response. Int. J. Innovat. Sci. Eng. Technol., 1: 174-180.

Direct Link | - Kumar, D., 2013. Simple PDE model of ductal carcinoma
*in situ*and vascularisation of nutrient. Adv. Applied Math. Biosci., 4: 69-79.

Direct Link | - Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2012. A mathematical model of chemotherapy for tumor treatment. Adv. Applied Math. Biosci., 3: 1-10.

Direct Link | - Sandhya, D. Kumar and P. Pandit, 2011. An ordinary differential equation model of diabetic population in New Delhi. Indian J. Math. Math. Sci., 7: 45-50.
- Sandhya and D. Kumar, 2011. Mathematical model for glucose-insulin regulatory system of diabetes mellitus. Adv. Applied Math. Biosci., 2: 39-46.

Direct Link | - Kant, S., S. Kumar and D. Kumar, 2011. A mathematical model of tumour growth with a specific dose of Il-4 (Interleukin-4). Math. Modell. Applied Comput., 2: 1-8.
- Kant, S., D. Kumar and S. Kumar, 2011. Mathematical model of homogeneous tumor with delay in time. Afr. J. Math. Comput. Sci. Res., 4: 201-207.

Direct Link | - Dixit, D.S., D. Kumar, S. Kumar and R. Johri, 2011. A mathematical model of vascular tumor with chemotherapy drug concentration at nano-scale. Int. J. Applied Math. Applic., 3: 77-83.
- Chand, P. and D. Kumar, 2011. Performance comparison of two on-demands routing protocols for mobile ad-hoc networks. Int. J. Adv. Eng. Technol., 1: 283-289.

Direct Link | - Kumar, D. and S. Kumar, 2010. A mathematical model of radio immunotherapy for tumor treatment. Afr. J. Math. Comput. Sci. Res., 3: 101-106.

Direct Link | - Kumar, S., S. Kumar and D. Kumar, 2009. Oscillatory MHD flow of blood through an artery with mild stenosis. IJE Trans. A: Basic, 22: 125-130.

Direct Link | - Kumar, S., R. Singh and D. Kumar, 2009. Mathematical model for the unsteady-state condition on oxygen diffusion through biological floc particles. Afr. J. Math. Comput. Sci. Res., 2: 215-219.
- Kumar, S., D. Kumar and R. Sharma, 2009. Mathematical Modelling for Tumor Growth and Control Strategies. In: Infectious Disease Modelling Research Progress, Tchuenche, J.M. and C. Chiyaka (Eds.). Chapter 8, Nova Science Publishers Inc., New York, USA, ISBN: 978-1-60741-347-9, pp: 229-251.
- Kumar, D., S. Kumar, A. Kumar and D. Dixit, 2008. A computational approach to study avascular tumor. Chintan-Iilm J. Sci., 1: 42-49.
- Kumar, S. and D. Kumar, 2006. A computational model for the interaction between cell density and immune response. Acta Ciencia Indica, 32: 549-554.
- Kumar, D. and S. Kumar, 2006. A mathematical model for the immune system competition-the effect of replication-competent virus dosages. Acta Ciencia Indica, 32: 543-548.
- Kumar, S. and D. Kumar, 2005. Mathematical modeling of the interaction between tumor cells and tissue cells. Proceedings of the National Conference on Frontiers in Applied and Computational Mathematics, March 4-5, 2005, School of Mathematics and Computer Applications, Thapar Institute of Engineering and Technology, Deemed University, Patiala, India, pp: 91-101.