Dr. Gyan  Prakash
My Social Links

Dr. Gyan Prakash

Professor (Statistics)
Department of Community Medicine Moti Lal Nehru Medical College Prayagraj, Uttar Pradesh India


Highest Degree
Ph.D. in Statistical Inference from Veer Bahadur Singh Purvanchal University, India

Share this Profile

Biography

Dr. Gyan Prakash is currently working as Professor (Statistics) in the Community Medicine Department at MLN Medical College, Prayagraj. He obtained his Ph.D. in Bayesian Statistics. His area of expertise includes Baysian, Inference, Testing, Estimation and Simulation. He has published more than 95 research papers in journals, in which more than 80 have been published in International Journals.

Area of Interest:

Bayesian Inference
100%
Bayesian Statistics
62%
Probability
90%
Inference
75%
Estimation
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Dwivedi, G., R. Singh, S. Ram, S. Prakash, G. Prakash and D. Anand, 2023. A study to assess knowledge, attitude and practices on the basis of scoring related to bio-medical waste management among health-care personnel in secondary care hospitals of Prayagraj, District. Indian J. Public Health Res. Dev., 14: 89-95.
    CrossRef  |  Direct Link  |  
  2. Singh, S., K. Parveen, G. Prakash and R. Singh, 2022. Psychological health and its determinants among elderlies of prayagraj. Indian J. Public Health Res. Dev., 13: 309-314.
    CrossRef  |  Direct Link  |  
  3. Prakash, G., 2022. Bayes prediction on optimum SS-PALT in generalized inverted exponential distribution: A two-sample approach. Austrian J. Stat., 51: 1-15.
    CrossRef  |  Direct Link  |  
  4. Prakash, G., 2021. Pareto distribution under hybrid censoring: Some estimation. J. Mod. Appl. Stat. Methods, Vol. 19. 10.22237/jmasm/1619481660.
    CrossRef  |  Direct Link  |  
  5. Kesarwani, R., A. Singh, V. Singh and G. Prakash, 2021. Study of association of age at presentation with outcome in patients with head-and-neck cancer. J. Clin. Sci. Res., 10: 79-84.
    CrossRef  |  Direct Link  |  
  6. Dwivedi, M.K., S. Bakshi, B.S. Shyam, R. Shukla, P.K. Singh and N.K. Sharma, 2021. Prevalence and associated factors of malaria in Pushparajgarh block of district Anuppur, Madhya Pradesh, India. Int. J. Community Med. Public Health, 8: 1221-1229.
    CrossRef  |  Direct Link  |  
  7. Prakash, G., 2020. Pareto type-II model under type-I progressive hybrid censoring: Bound lengths. Austrian J. Stat., 49: 45-59.
    CrossRef  |  Direct Link  |  
  8. Prakash, G., 2019. Step-stress partially accelerated life test for rayleigh distribution: Some inference. Int. J. Intell. Technol. Appl. Stat., 12: 251-265.
    CrossRef  |  Direct Link  |  
  9. Prakash, G. and M.K. Mishra, 2019. SS-PALT combined with type-I progressive hybrid burr type-XII data for bayes estimation. Int. J. Intell. Technol. Appl. Stat., 12: 395-416.
    CrossRef  |  Direct Link  |  
  10. Gupta, P., A.K. Chaurasia, A. Mishra and G. Prakash, 2018. Study of prevalence of dyslipidemia in newly diagnosed essential hypertension. Int. J. Contem. Med. Surg. Radiol., 3: 95-98.
    CrossRef  |  Direct Link  |  
  11. Prakash, G., 2017. Some Bayes estimators for Pareto type-II progressive censored data. Electron. J. Applied Stat. Anal., 10: 257-270.
    Direct Link  |  
  12. Prakash, G., 2017. Progressive censored burr type-XII distribution under random removal scheme: Some inferences. Afrika Statistika, 12: 1273-1284.
    CrossRef  |  Direct Link  |  
  13. Prakash, G., 2017. First failure progressive censored Weibull data under Bayesian analysis. Stat. Res. Lett., 6: 1-8.
  14. Prakash, G., 2017. Confidence limits for progressive censored Burr type-XII data under constant-partially ALT. J. Stat. Applied Prob., 6: 295-303.
  15. Prakash, G., 2017. Bound lengths for Burr-XII distribution under step-stress PALT. Int. J. Sci. World, 5: 135-140.
  16. Prakash, G., 2017. A Bayesian shift point estimation under right censored Weibull failure model. Int. J. Intell. Technol. Applied Statist., 10: 19-31.
    CrossRef  |  Direct Link  |  
  17. Kaushal, S.K., M. Kaushal, G. Prakash and S.K. Misra, 2017. Perception and behavior of urban women regarding fertility: A cross sectional study. Int. J. Commun. Med. Public Health, 3: 1573-1578.
    CrossRef  |  
  18. Prakash, G., 2016. Some inference on progressive censored Gompertz data under random scheme. Int. J. Sci. Res., 6: 290-299.
  19. Prakash, G., 2016. Empirical bayes procedures under Lomax record data. J. Applied Math. Stat., 3: 182-197.
    Direct Link  |  
  20. Prakash, G., 2016. Bound lengths based on empirical Bayesian scenario for a Repairable system. Int. J. Math. Sci. Comp., 6: 36-39.
    Direct Link  |  
  21. Prakash, G., 2016. Bayes prediction under progressive type-II censored Rayleigh data. J. Stat. Appl. Prob., 5: 1-11.
  22. Prakash, G., 2016. Bayes prediction bound lengths under different censoring criterion: A comparative study. Int. J. Intell. Technol. Applied Statist., 9: 53-66.
    CrossRef  |  
  23. Prakash, G., 2016. BPBL under progressively pooled censored Rayleigh data. J. Applied Math. Stat., 3: 99-109.
  24. Kaushal, S.K., V. Gupta, G. Prakash and S.K. Misra, 2016. Correlates of metabolic syndrome and prevalence among urban population of Agra, Uttar Pradesh, India. Int. J. Commun. Med. Pub. Health, 3: 3570-3575.
  25. Prakash, G., 2015. Shrinkage bayesian approach in item-failure gamma data in presence of prior point guess value. Int. J. Math. Sci. Comp., 5: 19-26.
  26. Prakash, G., 2015. Reliability performances based on empirical Bayes censored Gompertz data. Int. J. Adv. Res., 3: 1297-1307.
  27. Prakash, G., 2015. Progressively censored Rayleigh data under Bayesian estimation. Int. J. Intell. Technol. Applied Statist., 8: 257-273.
    CrossRef  |  
  28. Prakash, G., 2015. Bayesian analysis under progressively censored Rayleigh data. J. Mod. Applied Stat. Methods, 14: 110-122.
    CrossRef  |  
  29. Prakash, G., 2015. Bayes prediction bound lengths for a Repairable system. Chilean J. Stat., 6: 19-30.
    Direct Link  |  
  30. Prakash, G., 2015. A comparative study under progressively first failure censored Rayleigh data. J. Reliab. Stat. Stud., 8: 147-157.
    Direct Link  |  
  31. Prakash, G., 2015. A comparative study based on bayes estimation under progressively censored rayleigh data. J. Statist. Applic. Probab., 4: 23-30.
  32. Prakash, G., 2015. A comparative study based on Bayes estimation under different censoring criterion. J. Data Sci., 13: 261-280.
  33. Kaushal, M., S.K. Misra, S.K. Kaushal, G. Prakash and A. Kumar, 2015. Unmet need of family planning in a district of western Uttar Pradesh. Indian J. Commun. Health, 27: 230-234.
    Direct Link  |  
  34. Agarwal, D., S.K. Misra, S.S. Chaudhary and G. Prakash, 2015. Are we underestimating the real burden of malnutrition? An experience from community-based study. Indian J. Commun. Med., 40: 268-272.
    CrossRef  |  
  35. Prakash, G., 2014. Shift point Bayes estimation under Weibull failure model. Electron. J. Applied Stat. Anal., 7: 375-393.
    CrossRef  |  Direct Link  |  
  36. Prakash, G., 2014. Right censored Bayes estimator for Lomax model. Stat. Res. Lett., 3: 23-28.
    Direct Link  |  
  37. Prakash, G., 2014. Change point estimation for Pareto type-II model. J. Mod. Applied Stat. Methods, 13: 339-353.
    Direct Link  |  
  38. Prakash, G., 2014. Bayes prediction bounds for right ordered Pareto type-II data. J. Stat. Applic. Probab., 3: 335-343.
    Direct Link  |  
  39. Prakash, G., 2013. Bayes estimation in the inverse Rayleigh model. Electron. J. Applied Stat. Anal., 6: 67-83.
    CrossRef  |  Direct Link  |  
  40. Prakash, G., 2013. A different approach in the shrinkage estimation for the Rayleigh model. Stat. Res. Lett., 2: 75-83.
    Direct Link  |  
  41. Prakash, G. and S. Kumar, 2013. Two sample Bayes prediction scenario under right censored repairable system. Stat. Optimiz. Inform. Comput., 1: 29-40.
    Direct Link  |  
  42. Prakash, G. and D.C. Singh, 2013. Bayes prediction intervals for the Pareto model. J. Probability Stat. Sci., 11: 109-122.
  43. Prakash, G., 2012. Inverted exponential distribution under a Bayesian viewpoint. J. Mod. Applied Stat. Methods, 11: 190-202.
    Direct Link  |  
  44. Prakash, G., 2012. Central coverage Bayes prediction intervals for the generalized Pareto distribution. Stat. Res. Lett., 1: 1-5.
    Direct Link  |  
  45. Prakash, G., 2012. Bayes estimation for a mixture of the Weibull distributions. Int. J. Math. Scient. Comput., 2: 34-38.
    Direct Link  |  
  46. Prakash, G., 2011. Some Bayes estimators for the repairable system. Model Assisted Stat. Applic., 6: 57-62.
    CrossRef  |  Direct Link  |  
  47. Prakash, G., 2011. Bayes shrinkage minimax estimation in inverse Gaussian distribution. Applied Math., 2: 830-835.
    CrossRef  |  
  48. Prakash, G., 2010. Shrinkage estimation in the inverse Rayleigh distribution. J. Mod. Applied Stat. Methods, 9: 209-220.
    Direct Link  |  
  49. Prakash, G., 2010. On Bayesian shrinkage setup for item failure data under a family of life testing distribution. J. Mod. Applied Stat. Methods, 9: 547-557.
    Direct Link  |  
  50. Prakash, G. and D.C. Singh, 2010. Sometimes pooled testimation in the inverse Gaussian model for measure of dispersion. J. Scient. Res., 2: 77-86.
    CrossRef  |  Direct Link  |  
  51. Prakash, G. and B.N. Pandey, 2010. Shrinkage estimation of the variance for the exponential type-II censored data. Int. J. Stat. Syst., 5: 251-263.
  52. Prakash, G. and B. Prasad, 2010. Bayes prediction intervals for the Rayleigh model. Model Assisted Stat. Applic., 5: 43-50.
    CrossRef  |  Direct Link  |  
  53. Prakash, G., 2009. Some estimators for the Pareto distribution. J. Scient. Res., 1: 236-247.
    CrossRef  |  Direct Link  |  
  54. Prakash, G., 2009. Some estimation procedures for the inverted exponential distribution. South Pac. J. Nat. Sci., 27: 71-78.
    CrossRef  |  Direct Link  |  
  55. Prakash, G. and D.C. Singh, 2009. Some shrinkage testimators for the scale parameter of Weibull distribution. Indian Assoc. Prod. Qual. Reliab., 34: 49-70.
  56. Prakash, G. and D.C. Singh, 2009. Shrinkage test-estimation for measure of dispersion in the inverse Gaussian model. J. Applied Stat. Sci., 17: 93-106.
  57. Prakash, G. and D.C. Singh, 2009. Estimation of the Weibull shape parameter in failure censored sampling under the LINEX loss. METRON-Int. J. Stat., 67: 31-50.
  58. Prakash, G. and D.C. Singh, 2009. Double stage shrinkage testimation in exponential type-II censored data. Stat. Transition-New Ser., 10: 235-250.
    Direct Link  |  
  59. Prakash, G. and D.C. Singh, 2009. Bayesian shrinkage estimation in a class of life testing distribution. Data Sci. J., 8: 243-258.
    CrossRef  |  Direct Link  |  
  60. Prakash, G. and D.C. Singh, 2009. A Bayesian shrinkage approach in Weibull Type-II censored data using prior point information. REVSTAT-Stat. J., 7: 171-187.
    Direct Link  |  
  61. Prakash, G., D.C. Singh and S.K. Sinha, 2008. On shrinkage estimation for the scale parameter of Weibull distribution. Data Sci. J., 7: 125-136.
    CrossRef  |  Direct Link  |  
  62. Prakash, G., D.C. Singh and B.N. Pandey, 2008. Some shrunken testimators for the variance of a normal distribution in double stage samples under an asymmetric loss function. J. Probab. Stat. Sci., 6: 135-154.
  63. Prakash, G. and D.C. Singh, 2008. Shrinkage estimation in exponential type-II censored data under LINEX loss. J. Korean Stat. Soc., 37: 53-61.
    CrossRef  |  Direct Link  |  
  64. Prakash, G. and D.C. Singh, 2008. Item failure data of Weibull failure model under Bayesian estimation. J. Stat. Res., 42: 131-140.
  65. Singh, D.C., G. Prakash and P. Singh, 2007. Shrinkage testimators for the shape parameter of Pareto distribution using LINEX loss function. Commun. Stat.-Theory Methods, 36: 741-753.
    CrossRef  |  Direct Link  |  
  66. Prakash, G. and B.N. Pandey, 2007. Shrinkage testimation for the variance of a Normal distribution under asymmetric loss function. J. Stat. Res., 41: 17-35.
    Direct Link  |  
  67. Prakash, G. and B.N. Pandey, 2007. Shrinkage estimation for logarithm of variance of a normal distribution under LINEX loss function. Indian Assoc. Prod. Qual. Reliab., 32: 43-56.
  68. Prakash, G., D.C. Singh and R.D. Singh, 2006. Some test estimators for the scale parameter of classical Pareto distribution. J. Stat. Res., 40: 41-54.
    Direct Link  |  
  69. Prakash, G. and D.C. Singh, 2006. Shrinkage testimators for the inverse dispersion of the inverse Gaussian distribution under the LINEX loss function. Austrian J. Stat., 35: 463-470.
    Direct Link  |