Dr. Zulfiqar Habib
My Social Links

Dr. Zulfiqar Habib

Professor
COMSATS University, Islamabad, Pakistan


Highest Degree
Ph.D. in Computer Science from Kagoshima University, Japan

Share this Profile

Biography

Dr. Zulfiqar Habib is currently working as Professor at COMSATS Institute of Information Technology, Lahore, Pakistan. He has completed his Ph.D. in Computer Graphics from Kagoshima University, Japan. His area of expertise includes Digital Image Processing, Computer Vision, Path Planning, and Robotics. He has published 24 research articles in refereed International ISI Journals, 1 book by international publishers, 2 book chapters, 19 refereed and indexed international conferences, and 10 papers in Japanese journals/ conferences/ workshops.

Area of Interest:

Computer Sciences
100%
Robotics
62%
Path Planning
90%
Computer Vision
75%
Digital Image Processing
55%

Research Publications in Numbers

Books
0
Chapters
5
Articles
45
Abstracts
0

Selected Publications

  1. Gilanie, G., U.I. Bajwa, M.M. Waraich and Z. Habib, 2019. Computer aided diagnosis of brain abnormalities using texture analysis of MRI images. Int. J. Imaging Syst. Technol., 2019: 1-12.
    CrossRef  |  
  2. Ashraf, M.N., M. Hussain and Z. Habib, 2019. Review of various tasks performed in the preprocessing phase of a diabetic retinopathy diagnosis system. Curr. Med. Imaging, 15: 1573-4056.
    CrossRef  |  Direct Link  |  
  3. Noreen, I., A. Khan, H. Ryu, N.L. Doh and Z. Habib, 2018. Optimal path planning in cluttered environment using RRT*-AB. Intell. Serv. Rob., 11: 41-52.
    CrossRef  |  Direct Link  |  
  4. Levent, A., B. Sahin and Z. Habib, 2018. Spiral transitions. Applied Math.-J. Chin. Uni., 33: 468-490.
    CrossRef  |  Direct Link  |  
  5. Gilanie, G., U.I. Bajwa, M.M. Waraich, Z. Habib, H. Ullah and M. Nasir, 2018. Classification of normal and abnormal brain MRI slices using gabor texture and support vector machines. Signal, Image Video Process., 12: 479-487.
    CrossRef  |  Direct Link  |  
  6. Gilanie, G., H. Ullah, M. Mehmood, U. Ejaz and Z. Habib, 2018. Colored representation of brain gray scale MRI images to potentially underscore the variability and sensitivity of images. Curr. Med. Imaging Rev., 14: 555-560.
    CrossRef  |  Direct Link  |  
  7. Sargano, A.B., P. Angelov and Z. Habib, 2017. A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. Applied Sci., Vol. 7. 10.3390/app7010110.
    CrossRef  |  Direct Link  |  
  8. Khan, A., I. Noreen, H. Ryu, N.L. Doh and Z. Habib, 2017. Online complete coverage path planning using two-way proximity search. Int. Serv. Rob., 10: 229-240.
    CrossRef  |  Direct Link  |  
  9. Khan, A., I. Noreen and Z. Habib, 2017. On complete coverage path planning algorithms for non-holonomic mobile robots: Survey and challenges. J. Inf. Sci. Eng., 33: 101-121.
    CrossRef  |  Direct Link  |  
  10. Bux, A., P. Angelov and Z. Habib, 2017. Vision Based Human Activity Recognition: A Review. In: Advances in Computational Intelligence Systems, Angelov P., A. Gegov, C. Jayne and Q. Shen (Eds.), Springer, Germany, ISBN: 978-3-319-46561-6, pp. 341-371.
  11. Asghar, K., Z. Habib and M. Hussain, 2017. Copy-move and splicing image forgery detection and localization: A review. Aust. J. Forensic Sci., 40: 281-307.
    CrossRef  |  Direct Link  |  
  12. Asghar, K., G. Gilanie, M. Saddique and Z. Habib, 2017. Automatic enhancement of digital images using cubic bezier curve and fourier transformation. Malaysian J. Comput. Sci., 30: 300-310.
    CrossRef  |  Direct Link  |  
  13. Sargano, A.B., P. Angelov and Z. Habib, 2016. Human action recognition from multiple views based on view invariant feature descriptor using support vector machines. Applied Sci., Vol. 6. 10.3390/app6100309.
    CrossRef  |  Direct Link  |  
  14. Noreen, I., A. Khan and Z. Habib, 2016. Optimal path planning using RRT* based approaches: A survey and future directions. Int. J. Adv. Comput. Sci. Appl., 7: 97-107.
    CrossRef  |  Direct Link  |  
  15. Noreen, I., A. Khan and Z. Habib 2016. A comparison of RRT, RRT* and RRT*-smart path planning algorithms. Int. J. Comput. Sci. Network Secur., 16: 20-27.
    Direct Link  |  
  16. Habib, Z., G. Rasool and M. Sakai, 2015. Admissible curvature continuous areas for fair curves using G2 Hermite PH quintic polynomial. J. King Saud Univ.-Comput. Inform. Sci., 27: 140-146.
    CrossRef  |  Direct Link  |  
  17. Ashraf, M.N., Z. Habib and M. Hussain, 2015. Computer Aided Diagnosis of Diabetic Retinopathy. Lambert Academic Publishing, Germany, ISBN: 978-3-659-77209-2, Pages: 188.
  18. Habib, Z. and M. Sakai, 2013. Fairing an arc spline and designing with G2 PH quintic spiral transitions. Int. J. Comput. Math., 90: 1023-1039.
    CrossRef  |  Direct Link  |  
  19. Habib, Z. and M. Sakai, 2012. Fairing arc spline and designing by using cubic Bezier spiral segments. Math. Model. Anal., 17: 141-160.
    CrossRef  |  Direct Link  |  
  20. Habib, Z. and M. Sakai, 2011. Cubic spiral transition matching G2 Hermite end conditions. Numer. Math.: Theory Methods Applic., 4: 525-536.
    CrossRef  |  Direct Link  |  
  21. Habib, Z., 2010. Spiral Function and Its Application in CAGD. VDM Verlag, USA., ISBN: 978-3-639-24988-0, Pages: 248.
  22. Habib, Z. and M. Sakai, 2010. Admissible regions for rational cubic spirals matching G2 Hermite data. Comput. Aided Design, 42: 1117-1124.
    CrossRef  |  Direct Link  |  
  23. Habib, Z. and M. Sakai, 2009. G2 cubic transition between two circles with shape control. Comput. Applied Math., 223: 133-144.
    CrossRef  |  Direct Link  |  
  24. Dimulyo, S., Z. Habib and M. Sakai, 2009. Fair cubic transition between two circles with one circle inside or tangent to the other. Numer. Algorithms, 51: 461-476.
    CrossRef  |  Direct Link  |  
  25. Habib, Z., 2008. Interactive shape preserving interpolation by t-conic spiral spline. Comput. Graphics CAD/CAM, 2: 25-40.
    Direct Link  |  
  26. Habib, Z. and M. Sakai, 2008. Transition between concentric or tangent circles with a single segment of G2 PH quintic curve. Comput. Aided Geometric Design, 25: 247-257.
    CrossRef  |  Direct Link  |  
  27. Habib, Z. and M. Sakai, 2007. G2 pythagorean hodograph quintic transition between two circles with shape control. Comput. Aided Geometric Design, 24: 252-266.
    CrossRef  |  Direct Link  |  
  28. Habib, Z. and M. Sakai, 2007. Circle to circle transition with a single PH quintic spiral. Scientiae Mathematicae Japonicae, 66: 361-371.
  29. Habib, Z. and M. Sakai, 2006. An answer to an open problem on cubic spiral transition between two circles. Comput. Algebra-Design Algorithms Implementations Applic., 1514: 46-52.
  30. Habib, Z., M. Sarfraz and M. Sakai, 2005. Rational cubic spline interpolation with shape control. Comput. Graphics, 29: 594-605.
    CrossRef  |  Direct Link  |  
  31. Habib, Z. and M. Sakai, 2005. Web-based visualization of conic and arc/conic spirals. Comput. Graphics CAD/CAM, 1: 16-26.
    Direct Link  |  
  32. Habib, Z. and M. Sakai, 2005. Spiral transition curves and their applications. Scientiae Mathematicae Japonicae, 61: 251-262.
    Direct Link  |  
  33. Habib, Z. and M. Sakai, 2005. G2 PH quintic spiral transition curves and their applications. Scientiae Mathematicae Japonicae, 61: 263-273.
    Direct Link  |  
  34. Habib, Z., M. Sakai and M. Sarfraz, 2004. Interactive shape control with rational cubic splines. Comput.-Aided Design Applic., 1: 709-717.
    CrossRef  |  Direct Link  |  
  35. Habib, Z. and M. Sarfraz, 2004. A Rational Spline with Inflection Points and Singularities Tests on Convex Data. In: Geometric Modeling: Techniques, Applications, Systems and Sarfraz, M. (Ed.). Kluwer Academic Publishers, The Netherlands, ISBN: 978-1-4020-1817-6, pp: 281-297.
  36. Habib, Z. and M. Sakai, 2004. Shapes of planar cubic curves. Scientiae Mathematicae Japonicae, 59: 253-258.
    Direct Link  |  
  37. Habib, Z. and M. Sakai, 2004. Family of G2 Spiral Transition between Two Circles. In: Advances in Geometric Modeling, Sarfraz, M. (Ed.), John Wiley & Sons, Ltd., Chichester, UK, ISBN: 9780470859377, pp: 133-150.
  38. Habib Z. and M. Sarfraz, 2004. A Rational Spline with Inflection Points and Singularities Tests on Convex Data. In: Geometric Modeling: Techniques, Applications, Systems and Tools, Sarfraz M. (Ed.), Springer, Dordrecht, ISBN: 978-90-481-6518-6, pp: 281-297..
  39. Habib, Z. and M. Sakai, 2003. Quadratic and T-cubic spline approximations to a planar spiral. Scientiae Mathematicae Japonicae, 57: 107-114.
  40. Habib, Z. and M. Sakai, 2003. G2 planar cubic transition between two circles. Int. J. Comput. Math., 80: 957-965.
    CrossRef  |  Direct Link  |  
  41. Habib, Z. and M. Sakai, 2003. Family of G2 Spiral Transition Between Two Circles. In: Advances in Geometric Modeling, Sarfraz, M. (Ed.). John Wiley, New York, ISBN: 978-0-470-85937-7, pp: 133-150.
  42. Habib, Z. and M. Sakai, 2002. High accurate rational cubic curve. Scientiae Mathematicae Japonicae, 55: 341-346.
  43. Habib, Z. and M. Sakai, 2002. G^2 two-point hermite rational cubic interpolation. Int. J. Comput. Math., 79: 1225-1231.
    CrossRef  |  Direct Link  |