Dr. Muhammad  Asif Zahoor Raja
My Social Links

Dr. Muhammad Asif Zahoor Raja

Assistant Professor
COMSATS Institute of Information Technology, Pakistan


Highest Degree
Ph.D. in Electronic Engineering from International Islamic University, Pakistan

Share this Profile

Biography

Dr. Muhammad Asif Zahoor Raja is currently working as Assistant Professor at Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan. He has completed his PhD from International Islamic University, Islamabad, Pakistan. His area of research interest focuses on Evolutionary Computation, Swarm Intelligence, Fractional Calculus, Fractional differential Equation, Numerical Computing, Particle Swarm Optimization, Genetic Algorithm, Neural Networks, Active Noise Control System, Direction of Arrival, Adaptive Beam Forming, and Optical Control Problems etc. He has published 44 research articles in journals, 2 book chapters, and 3 conference papers as author/ co-author. He also supervised/ supervising number of MS/ M.Phil students.

Area of Interest:

Mathematics
100%
Fractional Calculus
62%
Fractional Differential Equation
90%
Genetic Algorithm
75%
Neural Networks
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Zameer, A., M. Majeed, S.M. Mirza, M.A.Z. Raja, A. Khan and N.M. Mirza, 2019. Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures. Soft Comput., 23: 3449-3463.
    CrossRef  |  Direct Link  |  
  2. Raja, M.A.Z., J. Mehmood, Z. Sabir, A.K. Nasab and M.A. Manzar, 2019. Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural computing and applications, 31: 793-812.
    CrossRef  |  Direct Link  |  
  3. Munir, A., M.A. Manzar, N.A. Khan and M.A.Z. Raja, 2019. Intelligent computing approach to analyze the dynamics of wire coating with Oldroyd 8-constant fluid. Neural Comput. Appl., 31: 751-775.
    CrossRef  |  Direct Link  |  
  4. Lodhi, S., M.A. Manzar, M.A.Z. Raja, 2019. Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl., 31: 359-378.
    CrossRef  |  Direct Link  |  
  5. Chaudhary, N.I., S. Zubair, M.A.Z. Raja and N. Dedovic, 2019. Normalized fractional adaptive methods for nonlinear control autoregressive systems. Applied Math. Modell., 66: 457-471.
    CrossRef  |  Direct Link  |  
  6. Ahmad, I., A. Rehman, F. Ahmad and M.A.Z. Raja, 2019. Heuristic computational intelligence approach to solve nonlinear multiple singularity problem of sixth Painlev́e equation. Neural Comput. Appl., 31: 101-115.
    CrossRef  |  Direct Link  |  
  7. Syam, M.I., M.A. Raja, M.M. Syam and H.M. Jaradat, 2018. An accurate method for solving the undamped duffing equation with cubic nonlinearity. Int. J. Appl. Comput. Math., Vol. 4. No.2. 10.1007/s40819-018-0502-1.
    CrossRef  |  Direct Link  |  
  8. Shah, S.M., R. Samar and M.A.Z. Raja, 2018. Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear Dyn., 92: 1243-1259.
    CrossRef  |  Direct Link  |  
  9. Sabir, Z., M.A. Manzar, M.A.Z. Raja, M. Sherazand A.M. Wazwaz, 2018. Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput., 65: 152-169.
    CrossRef  |  Direct Link  |  
  10. Raja, M.A.Z., Z. Shah, M.A. Manzar, I. Ahmad, M. Awais and D. Baleanu, 2018. A new stochastic computing paradigm for nonlinear Painleve II systems in applications of random matrix theory. Eur. Phys. J. Plus, 10.1140/epjp/i2018-12080-4.
    CrossRef  |  Direct Link  |  
  11. Raja, M.A.Z., M.A. Manzar, F.H. Shah and F.H. Shah, 2018. Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models. Appl. Soft Comput., 62: 359-372.
    CrossRef  |  Direct Link  |  
  12. Raja, M.A.Z., M. Umar, Z. Sabir, J.A. Khan and D. Baleanu, 2018. A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus, Vol. 133 No. 9. 10.1140/epjp/i2018-12153-4.
    CrossRef  |  Direct Link  |  
  13. Raja, M.A.Z., F.H.Shah and M.I. Syam, 2018. Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput. Appl., 30: 3651-3675.
    CrossRef  |  Direct Link  |  
  14. Raja, M.A.Z., F.H. Shah, M. Tariq and I. Ahmad, 2018. Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput. Appl., 29: 83-109.
    CrossRef  |  Direct Link  |  
  15. Raja, M.A.Z., A.A. Shah, A. Mehmood, N.I. Chaudhary and M.S. Aslam, 2018. Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput. Appl., 29: 1455-1474.
    CrossRef  |  Direct Link  |  
  16. Raja, M.A.Z., A. Zameer, A.K.Kiani, A. Shehzad and M.A.R. Khan, 2018. Nature-inspired computational intelligence integration with Nelder–Mead method to solve nonlinear benchmark models. Neural Comput. Appl., 29: 1169-1193.
    CrossRef  |  Direct Link  |  
  17. Raja, M.A.Z., A. Mehmood, S.A. Niazi and S.M. Shah, 2018. Computational intelligence methodology for the analysis of RC circuit modelled with nonlinear differential order system. Neural Comput. Appl., 30: 1905-1924.
    CrossRef  |  Direct Link  |  
  18. Raja, M.A.Z., A. Mehmood, A. ur Rehman, A. Khan and A. Zameer, 2018. Bio-inspired computational heuristics for Sisko fluid flow and heat transfer models. Applied Soft Comput., 71: 622-648.
    CrossRef  |  Direct Link  |  
  19. Mehmood, A., M.S. Aslam, N.I. Chaudhary, A. Zameer and M.A.Z. Raja, 2018. Parameter estimation for Hammerstein control autoregressive systems using differential evolution. Signal Image Video Process., 12: 1603-1610.
    CrossRef  |  Direct Link  |  
  20. Mehmood, A., A. Zameer, S.H. Ling and M.A.Z. Raja, 2018. Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow. J. Taiwan Ins. Chem. Eng., 91: 57-85.
    CrossRef  |  Direct Link  |  
  21. Mehmood, A., A. Zameer, M.A.Z. Raja, R. Bibi, N.I. Chaudhary and M.S. Aslam, 2018. Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving average systems. Neural Comput. Appl., Vol. 1. No. 24. 10.1007/s00521-018-3406-4.
    CrossRef  |  Direct Link  |  
  22. Mehmood, A., A. Zameer and M.A.Z. Raja, 2018. Intelligent computing to analyze the dynamics of Magnetohydrodynamic flow over stretchable rotating disk model. Appl. Soft Comput., 67: 8-28.
    CrossRef  |  Direct Link  |  
  23. Masood, Z., K. Majeed, R. Samar and M.A.Z. Raja, 2018. Design of epidemic computer virus model with effect of quarantine in the presence of immunity. Fundamenta Informaticae, 161: 249-273.
    CrossRef  |  Direct Link  |  
  24. Khan, N.A., T. Hameed, N.A. Khan and M.A.Z. Raja, 2018. A heuristic optimization method of fractional convection reaction an application to diffusion process. Therm. Sci., 22: S243-S252.
    Direct Link  |  
  25. Chaudhary, N.I., S. Zubair and M.A.Z. Raja, 2018. Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems. Neural Comput. Appl., 30: 1133-1143.
    CrossRef  |  Direct Link  |  
  26. Chaudhary, N.I., M.A. Manzar and M.A.Z. Raja, 2018. Fractional Volterra LMS algorithm with application to Hammerstein control autoregressive model identification. Neural Comput. Appl., Vol. 1. No. 14. 10.1007/s00521-018-3362-z.
    CrossRef  |  Direct Link  |  
  27. Chaudhary, N.I., M. Ahmed, Z.A. Khan, S. Zubair, M.A.Z. Raja and N. Dedovic, 2018. Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems. Appl. Math. Modell., 55: 698-715.
    CrossRef  |  Direct Link  |  
  28. Awan, S.E., Z.A. Khan, M. Awais, S.U. Rehman and M.A.Z. Raja, 2018. Numerical treatment for hydro-magnetic unsteady channel flow of nanofluid with heat transfer. Results Phys., 9: 1543-1554.
    CrossRef  |  Direct Link  |  
  29. Awan, S.E., M. Awais, S.U. Rehman, S.A. Niazi and M.A.Z. Raja, 2018. Dynamical analysis for nanofluid slip rheology with thermal radiation, heat generation/absorption and convective wall properties. AIP Adv., Vol. 8. No. 7. 10.1063/1.5033470.
    CrossRef  |  Direct Link  |  
  30. Awais, M., S.E. Awan, N.M. Aqsa, S.U. Rehman and M.A.Z.R. Rehman, 2018. Numerical and analytical approach for Sakiadis rheology of generalized polymeric material with magnetic field and heat source/sink. Therm. Sci. 10.2298/TSCI180426284A.
    CrossRef  |  Direct Link  |  
  31. Awais, M., S.E. Awan, K. Iqbal, Z.A. Khan and M.A.Z. Raja, 2018. Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo-Christov heat flux model: OHAM analysis. Results physics, 8: 621-627.
    CrossRef  |  Direct Link  |  
  32. Ara, A., N.A. Khan, O.A. Razzaq, T. Hameed and M.A.Z. Raja, 2018. Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling. Adv. Differ. Equations, Vol. 1. No. 8. 10.1186/s13662-017-1461-2.
    CrossRef  |  Direct Link  |  
  33. Ara, A., N.A. Khan, F. Naz, M.A.Z. Raja and Q. Rubbab, 2018. Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm. AIP Advances, Vol. 8. No. 1. 10.1063/1.5011727.
    CrossRef  |  Direct Link  |  
  34. Akbar, S., F. Zaman, M. Asif, A.U. Rehman and M.A.Z. Raja, 2018. Novel application of FO-DPSO for 2-D parameter estimation of electromagnetic plane waves. Neural Comput. Appl., 10.1007/s00521-017-3318-8.
    CrossRef  |  Direct Link  |  
  35. Ahmad, I., S. Ahmad, M. Awais, S.U.I. Ahmad, M.A.Z. Raja, 2018. Neuro-evolutionary computing paradigm for Painleve equation-II in nonlinear optics. Eur. Phys. J. Plus, 10.1140/epjp/i2018-12013-3.
    CrossRef  |  Direct Link  |  
  36. Ahmad, I., F. Ahmad, M.A.Z. Raja, H. Ilyas, N. Anwar and Z. Azad, 2018. Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Comput. Appl., 29: 449-466.
    CrossRef  |  Direct Link  |  
  37. Zameer, A., J. Arshad, A. Khan and M.A.Z. Raja, 2017. Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Conver. Manage., 134: 361-372.
    CrossRef  |  Direct Link  |  
  38. Shah, S.M., R. Samar, N.M. Khan and M.A.Z. Raja, 2017. Design of fractional-order variants of complex LMS and NLMS algorithms for adaptive channel equalization. Nonlinear Dyn., 88: 839-858.
    CrossRef  |  Direct Link  |  
  39. Raja, M.A.Z., T. Ahmed and S.M. Shah, 2017. Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. J. Taiwan Inst. Chem. Eng., 80: 935-953.
    CrossRef  |  Direct Link  |  
  40. Raja, M.A.Z., S.A. Niazi and S.A. Butt, 2017. An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine. Neurocomput., 219: 280-299.
    CrossRef  |  Direct Link  |  
  41. Raja, M.A.Z., S. Azad AND S.M. Shah, 2017. Bio-inspired computational heuristics to study the boundary layer flow of the Falkner-Scan system with mass transfer and wall stretching. Appl. Soft Comput., 57: 293-314.
    CrossRef  |  Direct Link  |  
  42. Raja, M.A.Z., R. Samar, M.A. Manzar and S.M. Shah, 2017. Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Math. Comput. Simul., 132: 139-158.
    CrossRef  |  Direct Link  |  
  43. Raja, M.A.Z., M.S. Aslam, N.I. Chaudhary, M. Nawaz and S.M. Shah, 2017. Design of hybrid nature-inspired heuristics with application to active noise control systems. Neural Comput. Appl., 10.1007/s00521-017-3214-2.
    CrossRef  |  Direct Link  |  
  44. Raja, M.A.Z., J.A. Khan, A. Zameer, N.A. Khan and M.A. Manzar, 2017. Numerical treatment of nonlinear singular Flierl–Petviashivili systems using neural networks models. Neural Comput. Appl., doi.org/10.1007/s00521-017-3193-3.
    CrossRef  |  Direct Link  |  
  45. Raja, M.A.Z., I. Ahmad, I. Khan, M.I. Syam and A.M. Wazwaz, 2017. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front. Inf. Technol. Electron. Eng., 18: 464-484.
    CrossRef  |  Direct Link  |  
  46. Masood, Z., K. Majeed, R. Samar and M.A.Z. Raja, 2017. Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. Neurocomput., 221: 1-14.
    CrossRef  |  Direct Link  |  
  47. Majeed, K., Z. Masood, R. Samar and M.A.Z. Raja, 2017. A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system. Appl. Soft Comput., 56: 420-435.
    CrossRef  |  Direct Link  |  
  48. Fateh, M.F., A. Zameer, N.M. Mirza, S.M. Mirza and M.A.Z. Raja, 2017. Biologically inspired computing framework for solving two-point boundary value problems using differential evolution. Neural Comput. Appl., 28: 2165-2179.
    CrossRef  |  Direct Link  |  
  49. Chaudhary, N.I., S. Zubair and M.A.Z. Raja, 2017. A new computing approach for power signal modeling using fractional adaptive algorithms. ISA transactions, 68: 189-202.
    CrossRef  |  Direct Link  |  
  50. Chaudhary, N.I., M.S. Aslam and M.A.Z. Raja, 2017. Modified Volterra LMS algorithm to fractional order for identification of Hammerstein non-linear system. IET Signal Process., 11: 975-985.
    CrossRef  |  Direct Link  |  
  51. Awais, M., S.E. Awan, M.I. Syam, M.A.Z. Raja and A.M. Wazwaz, 2017. Unsteady rheology of mhd newtonian material with soret and dufours effects. Int. J. Appl. Comput. Math., 3: 1299-1311.
    CrossRef  |  Direct Link  |  
  52. Aslam, M.S., N.I. Chaudhary and M.A.Z. Raja, 2017. A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems. Nonlinear Dyn., 87: 519-533.
    CrossRef  |  Direct Link  |  
  53. Akbar, S., M.A.Z. Raja, F. Zaman, T. Mehmood and M.A.R. Khan, 2017. Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wireless Pers. Commun., 96: 1475-1494.
    CrossRef  |  Direct Link  |  
  54. Ahmad, I., M.A.Z. Raja, M. Bilal and F. Ashraf, 2017. Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput. Appl., 28: 929-944.
    CrossRef  |  Direct Link  |  
  55. Shah, S.M., R. Samar, N.M. Khan and M.A.Z. Raja, 2016. Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn., 85: 1363-1376.
    CrossRef  |  Direct Link  |  
  56. Raja, M.A.Z., U. Farooq, N.I. Chaudhary and A.M. Wazwaz, 2016. Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Applied Soft Comput., 38: 561-586.
    CrossRef  |  Direct Link  |  
  57. Raja, M.A.Z., R. Samar, E.S. Alaidarous and E. Shivanian, 2016. Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Applied Math. Modell., 40: 5964-5977.
    CrossRef  |  Direct Link  |  
  58. Raja, M.A.Z., M.A.R Khan, T. Mahmood, U. Farooq and N.I. Chaudhary, 2016. Design of bio-inspired computing technique for nanofluidics based on nonlinear Jeffery–Hamel flow equations. Can. J. Phys., 94: 474-489.
    CrossRef  |  Direct Link  |  
  59. Raja, M.A.Z., J.A. Khan, N.I. Chaudhary and E. Shivanian, 2016. Reliable numerical treatment of nonlinear singular Flierl-Petviashivili equations for unbounded domain using ANN, GAs and SQP. Applied Soft Comput., 38: 617-636.
    CrossRef  |  Direct Link  |  
  60. Raja, M.A.Z., A.K. Kiani, A. Shehzad and A. Zameer, 2016. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models. SpringerPlus, Vol. 5. No. 1. 10.1186/s40064-016-3750-8.
    CrossRef  |  Direct Link  |  
  61. Raja, M.A.Z., A. Zameer, A.U. Khan and A.M. Wazwaz, 2016. A new numerical approach to solve Thomas–Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. SpringerPlus, Vol. 5. No. 1. 10.1186/s40064-016-3093-5.
    CrossRef  |  Direct Link  |  
  62. Khan, N.A., S. Khan, A. Shaikh and M.A.Z. Raja, 2016. MHD stagnation point flow of nanofluids over an off centered rotating disk in a porous medium via Haar wavelet. J. Nanofluids, 5: 444-458.
    CrossRef  |  Direct Link  |  
  63. Khan, N.A., A. Shaikh, M.Z. Raja and S. Khan, 2016. A neural computational intelligence method based on Legendre polynomials for fuzzy fractional order differential equation. J. Appl. Math. Stat. Inf., 12: 67-82.
    Direct Link  |  
  64. Ahmad, I., M.A.Z. Raja, M. Bilal and F. Ashraf, 2016. Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus, Vol. 5. No. 1. 10.1186/s40064-016-3517-2.
    CrossRef  |  Direct Link  |  
  65. Raja, M.A.Z., Z. Sabir, N. Mahmood, E.S. Al-Aidarous and J.A. Khan, 2015. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neural Comput. Applic., 26: 1-23.
    CrossRef  |  Direct Link  |  
  66. Raja, M.A.Z., R. Samar, T. Haroon and S.M. Shah, 2015. Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery-Hamel problem. Applied Math. Mech., 36: 1611-1638.
    CrossRef  |  Direct Link  |  
  67. Raja, M.A.Z., M.A. Manzar and R. Samar, 2015. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Applied Math. Modell., 39: 3075-3093.
    CrossRef  |  Direct Link  |  
  68. Raja, M.A.Z., J.A. Khan, A.M. Siddiqui, D. Behloul, T. Haroon and R. Samar, 2015. Exactly satisfying initial conditions neural network models for numerical treatment of first Painleve equation. Applied Soft Comput., 26: 244-256.
    CrossRef  |  Direct Link  |  
  69. Raja, M.A.Z., J.A. Khan and T. Haroon, 2015. Stochastic Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiwan Inst. Chem. Eng., 48: 26-39.
    CrossRef  |  Direct Link  |  
  70. Raja, M.A.Z., F.H. Shah, A.A. Khan and N.A. Khan, 2015. Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. J. Taiwan Inst. Chem. Eng., (In Press). 10.1016/j.jtice.2015.10.020.
    CrossRef  |  Direct Link  |  
  71. Raja, M.A.Z. and N.I. Chaudhary, 2015. Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems. Signal Process., 107: 327-339.
    CrossRef  |  Direct Link  |  
  72. Khan, J.A., M.A.Z. Raja, M.M. Rashidi, M.I. Syam and A.M. Wazwaz, 2015. Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory. Connection Sci., (In Press). 10.1080/09540091.2015.1092499.
    CrossRef  |  Direct Link  |  
  73. Khan, J.A., M.A.Z. Raja, M.I. Syam, S.A.K. Tanoli and S.E. Awan, 2015. Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput. Applic., 26: 1763-1780.
    CrossRef  |  Direct Link  |  
  74. Chaudhary, N.I., M.A.Z. Raja and A.U.R. Khan, 2015. Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems. Nonlinear Dyn., 82: 1811-1830.
    CrossRef  |  Direct Link  |  
  75. Chaudhary, N.I. and M.A.Z. Raja, 2015. Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms. Nonlinear Dyn., 79: 1385-1397.
    CrossRef  |  Direct Link  |  
  76. Chaudhary, N.I. and M.A.Z. Raja, 2015. Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems. Signal Process., 116: 141-151.
    CrossRef  |  Direct Link  |  
  77. Aslam, M.S. and M.A.Z. Raja, 2015. A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process., 107: 433-443.
    CrossRef  |  Direct Link  |  
  78. Shah, S.M., R. Samar, M.A.Z. Raja and J.A. Chambers, 2014. Fractional normalised filtered-error least mean squares algorithm for application in active noise control systems. Electron. Lett., 50: 973-975.
    CrossRef  |  Direct Link  |  
  79. Sabir, Z. and M.A.Z. Raja, 2014. Numeric treatment of nonlinear second order multi-point boundary value problems using ANN, GAs and sequential quadratic programming technique. Int. J. Ind. Eng. Comput., 5: 431-442.
    CrossRef  |  Direct Link  |  
  80. Raja, M.A.Z., R. Samar and M.M. Rashidi, 2014. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput. Applic., 25: 1585-1601.
    CrossRef  |  Direct Link  |  
  81. Raja, M.A.Z., J.A. Khan, S.M. Shah, R. Samar and D. Behloul, 2014. Comparison of three unsupervised neural network models for first Painleve transcendent. Neural Comput. Applic., 26: 1055-1071.
    CrossRef  |  Direct Link  |  
  82. Raja, M.A.Z., 2014. Unsupervised neural networks for solving Troesch's problem. Chin. Phys. B, Vol. 23, No. 1. 10.1088/1674-1056/23/1/018903.
    CrossRef  |  Direct Link  |  
  83. Raja, M.A.Z., 2014. Stochastic numerical treatment for solving Troesch's problem. Inform. Sci., 279: 860-873.
    CrossRef  |  Direct Link  |  
  84. Raja, M.A.Z., 2014. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Sci., 26: 195-214.
    CrossRef  |  Direct Link  |  
  85. Raja, M.A.Z., 2014. Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Applied Soft Comput., 24: 806-821.
    CrossRef  |  Direct Link  |  
  86. Raja, M.A.Z. and S.I. Ahmad, 2014. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Comput. Applic., 24: 549-561.
    CrossRef  |  Direct Link  |  
  87. Raja, M.A.Z. and R. Samar, 2014. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput. Applic., 25: 1723-1739.
    CrossRef  |  Direct Link  |  
  88. Raja, M.A.Z. and R. Samar, 2014. Numerical treatment of nonlinear MHD Jeffery-Hamel problems using stochastic algorithms. Comput. Fluids, 91: 28-46.
    CrossRef  |  Direct Link  |  
  89. Raja, M.A.Z. and R. Samar, 2014. Numerical treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124: 178-193.
    CrossRef  |  Direct Link  |  
  90. Raja, M.A.Z. and N.I. Chaudhary, 2014. Adaptive strategies for Parameter estimation of Box-Jenkins systems. IET Signal Process., 8: 968-980.
    CrossRef  |  Direct Link  |  
  91. Raja, M.A.Z., S.I. Ahmad and R. Samar, 2013. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput. Applic., 23: 2199-2210.
    CrossRef  |  Direct Link  |  
  92. Raja, M.A.Z., J.A. Khan, S.I. Ahmad and I.M. Qureshi, 2013. Numerical Treatment for Painleve Equation I Using Neural Networks and Stochastic Solvers. In: Innovation in Intelligent Machines-3: Contemporary Achievements in Intelligent Systems, Jordanov, I. and L.C. Jain (Eds.). Chapter 7, Springer, Berlin, Germany, ISBN: 978-3-642-32176-4, pp: 103-117.
  93. Khan, J.A., M.A.Z. Raja and A. Umer, 2013. Hybrid computational approach GA-SQP for antenna array signal processing in mobile communication. Sci. Int., 25: 203-213.
    Direct Link  |  
  94. Khan, J.A. and M.A.Z. Raja, 2013. Artificial intelligence based solver for governing model of radioactivity cooling, self-gravitating clouds and clusters of galaxies. Res. J. Applied Sci. Eng. Technol., 6: 450-456.
    Direct Link  |  
  95. Chaudhary, N.I., M.A.Z. Raja, J.A. Khan and M.S. Aslam, 2013. Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Scient. World J. 10.1155/2013/467276.
    CrossRef  |  Direct Link  |  
  96. Zaman, F., I.M. Qureshi, A. Naveed, J.A. Khan and R.M.A. Zahoor, 2012. Amplitude and directional of arrival estimation: Comparison between different techniques. Progr. Electromagn. Res. B, 39: 319-335.
    Direct Link  |  
  97. Raja, M.A.Z., J.A. Khan, S.I. Ahmad and I.M. Qureshi, 2012. A new stochastic technique for Painleve equation-I using neural network optimized with swarm intelligence. Comput. Intell. Neurosci. 10.1155/2012/721867.
    CrossRef  |  Direct Link  |  
  98. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2012. An application of evolutionary computational technique to non-linear singular system arising in polytrophic and isothermal sphere. Global J. Res. Eng.: Numer., 12: 9-15.
    Direct Link  |  
  99. Raja, M.A.Z., J.A. Khan and I.M. Qureshi, 2011. Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng. Intell. Syst., 19: 41-51.
  100. Raja, M.A.Z., J.A. Khan and I.M. Qureshi, 2011. Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math. Probl. Eng. 10.1155/2011/675075.
    CrossRef  |  Direct Link  |  
  101. Raja, M.A.Z., I.M. Qureshi and J.A. Khan, 2011. Swarm intelligence optimized neural networks for solving fractional differential equations. Int. J. Innov. Comput. Inform. Control, 7: 6301-6318.
    Direct Link  |  
  102. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2011. Stochastic computational approach for complex nonlinear ordinary differential equations. Chin. Phys. Lett., Vol. 28, No. 2. 10.1088/0256-307X/28/2/020206.
    CrossRef  |  Direct Link  |  
  103. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2011. Numerical treatment of nonlinear Emden-Fowler equation using stochastic technique. Ann. Math. Artif. Intell., 63: 185-207.
    CrossRef  |  Direct Link  |  
  104. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2011. Novel approach for a van der Pol oscillator in the continuous time domain. Chin. Phys. Lett., Vol. 28. 10.1088/0256-307X/28/11/110205.
    CrossRef  |  Direct Link  |  
  105. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2011. Hybrid evolutionary computational approach: Application to van der Pol oscillator. Int. J. Phys. Sci., 6: 7247-7261.
    Direct Link  |  
  106. Raja, M.A.Z., J.A. Khan and I.M. Qureshi, 2010. Evolutionary Computational Intelligence in Solving the Fractional Differential Equations. In: Intelligent Information and Database Systems, Nguyen, N.T., M.T. Le and J. Swiatek (Eds.). Springer-Verlag, Germany, ISBN: 978-3-642-12144-9, pp: 231-240.
  107. Raja, M.A.Z., J.A. Khan and I.M. Qureshi, 2010. A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell., 60: 229-250.
    CrossRef  |  Direct Link  |  
  108. Zahoor, R.M.A., J.A. Khan and I.M. Qureshi, 2009. Evolutionary computation technique for solving Riccati differential equation of arbitrary order. World Acad. Sci. Eng. Technol., 58: 303-309.
    Direct Link  |  
  109. Zahoor, R.M.A. and I.M. Qureshi, 2009. A modified least mean square algorithm using fractional derivative and its application to system identification. Eur. J. Scient. Res., 35: 14-21.
    Direct Link  |  
  110. Khan, J.A., M.A.Z. Raja and I.M. Qureshi, 2009. Swarm intelligence for the problem of non-linear ordinary differential equations and its application to well-known Wessinger's equation. Eur. J. Scient. Res., 34: 514-525.
    Direct Link  |  
  111. Junaid, A., M.A.Z. Raja and I.M. Qureshi, 2009. Evolutionary computing approach for the solution of initial value problems in ordinary differential equations. World Acad. Sci. Eng. Technol., 55: 578-581.