Dr. Rostam  K. Saeed
My Social Links

Dr. Rostam K. Saeed

Professor
Salahaddin University, Iraq


Highest Degree
Ph.D. in Mathematics from Salahaddin University, Iraq

Share this Profile

Area of Interest:

Mathematics
100%
Approximation Theory
62%
Numerical Analysis
90%
Functional Analysis
75%
Integral Equations
55%

Research Publications in Numbers

Books
0
Chapters
0
Articles
0
Abstracts
0

Selected Publications

  1. Saeed, R.K. and F.W. Khthr, 2011. New third-order iterative method for solving nonlinear equations. J. Applied Sci. Res., 7: 916-921.
  2. Saeed, R.K. and B.M. Rahman, 2011. Differential transform method for solving system of delay differential equation. Aust. J. Basic Applied Sci., 5: 201-206.
    Direct Link  |  
  3. Mahmud, M.H. and R.K. Saeed, 2011. Numerical solution of system of two-dimensional linear fredholm integral equations of the second kind by adomian decomposition method. Proceedings of the 4th International Scientific Conference of Salahaddin University, October 18-20, 2011, Erbil, Kurdistan, Iraq. -.
  4. Saeed, R.K., S.A. Manaa and F.H. Easif, 2010. Numerical solution of brusselator model by expansion methods. Aust. J. Basic Applied Sci., 4: 3389-3403.
    Direct Link  |  
  5. Saeed, R.K., 2010. Six Order iterative method for solving nonlinear equations. World Applied Sci. J., 11: 1393-1397.
    Direct Link  |  
  6. Saeed, R.K. and H.M. Sdeq, 2010. Solving a system of linear fredholm fractional integro-differential equations using homotopy perturbation method. Aust. J. Basic Applied Sci., 4: 633-638.
  7. Saeed, R.K. and F.W. Khthr, 2010. Three new iterative methods for solving nonlinear equations. Aust. J. Basic Applied Sci., 4: 1022-1030.
    Direct Link  |  
  8. Saeed, R.K. and B.M. Rahman, 2010. Adomian decomposition method for solving system of delay differential equation. Aust. J. Basic Applied Sci., 4: 3613-3621.
    Direct Link  |  
  9. Manaa, S.A., R.K. Saeed and F.H. Easif, 2010. Numerical solution of brusselator model by finite difference method. J. Applied Sci. Res., 6: 1632-1646.
  10. Al-Bayati, A.Y., R.K. Saeed and K.H. Jwamer, 2010. The existence, uniqueness and upper bounds for errors of six degree spline interpolating the lacunary data (0,2,5). Raf. J. Comput. Sci. Math., 7: 49-57.
    Direct Link  |  
  11. Al-Bayati, A.Y., R.K. Saeed and F.K. Hamasalh, 2010. Lacunary interpolation by quartic splines with application to quadratures. Int. J. Open Prob. Comput. Math., 3: 315-328.
    Direct Link  |  
  12. Al-Bayati, A.Y., R.K. Saeed and F.K. Hamasalh, 2010. Construction of lacunary sextic spline function interpolation and their applications. J. Educ. Sci., 23: 108-115.
  13. Saeed, R.K. and M.H. Mahmud, 2009. Solution of a system of two-dimensional linear fredholm integral equation of the second kind by quadrature methods. Aust. J. Basic Applied Sci., 3: 1701-1715.
  14. Al-Bayati, A.Y., R.K. Saeed and F.K. Hamasalh, 2009. The existence, uniqueness and error bounds of approximation splines interpolation for solving second-order initial value problems. J. Math. Statist., 5: 123-129.
  15. Al-Bayati, A.Y., R.K. Saeed and F.K. Hama-Salh, 2009. Computational quintic C4-lacunary spline interpolation method for solving second-order initial value problems. J. Applied Sci. Res., 5: 733-740.
  16. Saeed, R.K., 2008. Homotopy perturbation method for solving system of nonlinear fredholm integral equations of the second kind. J. Applied Sci. Res., 4: 1166-1173.
  17. Saeed, R.K. and K.M. Aziz, 2008. Approximate solution of the system of nonlinear fredholm integral equations of the second kind using spline function. J. Kirkuk Univ. Sci. Stud., 3: 113-128.
  18. Saeed, R.K. and K.M. Aziz, 2008. An iterative method with quartic convergence for solving nonlinear equations. Applied Math. Comput., 202: 435-440.
    CrossRef  |  
  19. Saeed, R.K. and C.S. Ahmed, 2008. Numerical solution of the system of linear volterra integral equations of the second kind using mote-carlo method. J. Applied Sci. Res., 4: 1174-1181.
    Direct Link  |  
  20. Saeed, R.K. and C.S. Ahmed, 2008. Approximate solution for the system of non-linear volterra integral equations of the second kind by using block-by-block method. Aust. J. Basic Applied Sci., 2: 114-124.
    Direct Link  |  
  21. Saeed, R.K., 2007. Solution of a system of linear fredholm integral equations of the second kind by iteration methods. J. Kirkuk Univ. Sci. Stud., 2: 57-68.
  22. Saeed, R.K. and K.H. Jwamer, 2005. Minimizing error bounds in lacunary interpolation by spline function, (0,1,4) case. J. Al-Nahrain Univ., 8: 114-119.
  23. Al-Faour, O.M. and R.K. Saeed, 2005. Solution of a linear system of fredholm integro-differential equation of the second kind by successive approximation, adomian decomposition and aitkin's methods, Zanko. Sci. J. Pure Applied Sci., 17: 79-89.
  24. Saeed, R.K. and A.M. Sabir, 2004. On boundary of joint numerical range of n-tuple operators on a complex Hilbert space, Zanko. Sci. J. Pure Applied Sci., 16: 157-166.
  25. Saeed, R.K. and K.H. Jwamer, 2003. Non-homogeneous lacunary interpolation by splines (0,3;0,2,4) case. J. Dohuk Univ., 6: 94-103.
  26. Saeed, R.K. and K.H. Jwamer, 2003. Lacunary interpolation by spline function (0,3) case. J. Zankoy Sulaimani, 6: 43-49.
  27. Saeed, R.K. and K.H. Jwamer, 2001. Lacunary interpolation by spline function (0,1,4) case. J. Dohuk Univ., 4: 193-196.
  28. Saeed, R.K., 2000. The solution of Cauchy's problem by using six degree spline. J. Dohuk Univ., 3: 22-25.
  29. Saeed, R.K. and F.S. Aziz, 2000. On hermite-fejer interpolation at tchebychev nodes at first kind. J. Dohuk Univ., 343: 90-94.
  30. Saeed, R.K., 1994. Solution of Cauchy's problem by deficient spline. J. Educ. Coll., 4: 1-8.
  31. Saeed, R.K., 1993. (0,2,5) Interpolation by six degree spline, Zanko. Sci. J. Pure Applied Sci., 5: 38-45.
  32. Saeed, R.K., 1993. (0,1,3,5) Lacunary interpolation by deficient splines. J. Sci. Nat., 2: 1-3.