Dr. Hassan Nosrati
My Social Links

Dr. Hassan Nosrati

Postdoctoral Researcher
Aarhus University Hospital, Denmark


Highest Degree
Ph.D. in Materials Science and Engineering from Tarbiat Modares University, Tehran, Iran

Share this Profile



Advertisement
Event

Area of Interest:

Materials Science and Engineering
100%
3D and 4D Printing Technology
62%
Biomaterials
90%
Cell Culture
75%
Tissue Engineering
55%

Research Publications in Numbers

Books
2
Chapters
0
Articles
30
Abstracts
13

Selected Publications

  1. Nosrati, H., R. Sarraf-Mamoory, M.C. Perez, D.Q.S. Le, R.Z. Emameh and C.E. BÊnger, 2021. Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics, Vol. 5. 10.1016/j.oceram.2021.100067.
    CrossRef  |  Direct Link  |  
  2. Azizi‐Malekabadi, M., H. Bakhshi, H. Shahbazi and H. Nosrati, 2021. Enhancement of the Ti‐6Al‐4V alloy corrosion resistance by applying CRN/CrAIN multilayer coating via Arc‐PVD method. Int. J. Applied Ceramic Technol., 18: 1288-1296.
    CrossRef  |  Direct Link  |  
  3. Nosrati, H., R.S. Mamoory, D.Q.S. Le, C.E. BÊnger, R.Z. Emameh and F. Dabir, 2020. Gas injection approach for synthesis of hydroxyapatite nanorods via hydrothermal method. Mater. Charact., Vol. 159. 10.1016/j.matchar.2019.110071.
    CrossRef  |  Direct Link  |  
  4. Nosrati, H., R.S. Mamoory, D.Q.S. Le and C.E. BÊnger, 2020. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Mater. Chem. Phys., Vol. 239. 10.1016/j.matchemphys.2019.122305.
    CrossRef  |  Direct Link  |  
  5. Nosrati, H., R. Sarraf-Mamoory, R.Z. Emameh, D.Q.S. Le, M.C. Perez and C.E. BÊnger, 2020. Low temperature consolidation of hydroxyapatite-reduced graphene oxide nano-structured powders. Mater. Adv., 1: 1337-1346.
    CrossRef  |  Direct Link  |  
  6. Nosrati, H., R. Sarraf-Mamoory, R.Z. Emameh, A. Aidun and M.C. Perez, 2020. Enhancing mechanical properties of hydroxyapatite-reduced graphene oxide nanocomposites by increasing the spark plasma sintering temperature. Inorg. Nano-Metal Chem., 10.1080/24701556.2020.1852251.
    CrossRef  |  Direct Link  |  
  7. Nosrati, H., R. Sarraf-Mamoory, M.H. Kazemi, M.C. Perez, M. Shokrollahi, R.Z. Emameh and R. Falak, 2020. Characterization of hydroxyapatite-reduced graphene oxide nanocomposites consolidated via high frequency induction heat sintering method. J. Asian Ceramic Soc., 8: 1296-1309.
    CrossRef  |  Direct Link  |  
  8. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le, R.Z. Emameh, M.C. Perez and C.E. BÊnger, 2020. Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave. Sci. Rep., Vol. 10. 10.1038/s41598-020-64928-y.
    CrossRef  |  Direct Link  |  
  9. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le, M.C. Perez and C.E. BÊnger, 2020. Studying the physical behavior of human mesenchymal stem cells on the surface of hydroxyapatite after adding graphene as a reinforcement. J. Bioeng. Res., 2: 1-10.
    Direct Link  |  
  10. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le, M.C. Perez and C.E. BÊnger, 2020. Evaluation of argon-gas-injected solvothermal synthesis of hydroxyapatite crystals followed by high-frequency induction heat sintering. Crystal Growth Des., 20: 3182-3189.
    CrossRef  |  Direct Link  |  
  11. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le, A.H. Ahmadi, M.C. Perez and C.E. BÊnger, 2020. Statistical evaluation of nano-structured hydroxyapatite mechanical characteristics by employing the vickers indentation technique. Ceramics Int., 46: 20081-20087.
    CrossRef  |  Direct Link  |  
  12. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le, A.H. Ahmadi, M.C. Perez and C.E. BÊnger, 2020. Investigating the mechanical behavior of hydroxyapatite-reduced graphene oxide nanocomposite under different loading rates. Nano Express, Vol. 1. 10.1088/2632-959x/ab98e2.
    CrossRef  |  Direct Link  |  
  13. Nosrati, H., R. Sarraf-Mamoory, D.Q.S. Le and C.E. BÊnger, 2020. Enhanced fracture toughness of three dimensional graphene- hydroxyapatite nanocomposites by employing the taguchi method. Composites Part B: Eng., Vol. 190. 10.1016/j.compositesb.2020.107928.
    CrossRef  |  Direct Link  |  
  14. Nosrati, H., R. Sarraf-Mamoory, A.K. Behnagh, R.Z. Emameh and A. Aidun et al., 2020. Comparison of the effect of argon, hydrogen, and nitrogen gases on the reduced graphene oxide-hydroxyapatite nanocomposites characteristics. BMC Chem., Vol. 14. 10.1186/s13065-020-00712-3.
    CrossRef  |  Direct Link  |  
  15. Nosrati, H., R. Sarraf-Mamoory, A.H. Ahmadi and M.C. Perez, 2020. Synthesis of graphene nanoribbons–hydroxyapatite nanocomposite applicable in biomedicine and theranostics. J. Nanotheranostics, 1: 6-18.
    CrossRef  |  Direct Link  |  
  16. Nosrati, H., D.Q.S. Le, R.Z. Emameh, M.C. Perez and C.E. BÊnger, 2020. Nucleation and growth of brushite crystals on the graphene sheets applicable in bone cement. Boletín la Sociedad Española Cerámica y Vidrio, 10.1016/j.bsecv.2020.05.001.
    CrossRef  |  Direct Link  |  
  17. Nosrati, H., R.S. Mamoory, F. Dabir, M.C. Perez, M.A. Rodriguez, D.Q.S. Le and C.E. BÊnger, 2019. In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chem. Phy., 222: 251-255.
  18. Nosrati, H., R.S. Mamoory, F. Dabir, D.Q.S. Le, C.E. BÊnger, M.C. Perez and M.A. Rodriguez, 2019. Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceramics Int., 45: 1761-1769.
    CrossRef  |  Direct Link  |  
  19. Nosrati, H., R.S. Mamoory, D.Q.S. Le and C.E. BÊnger, 2019. Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond Related Mater., Vol. 100. 10.1016/j.diamond.2019.107561.
    CrossRef  |  Direct Link  |  
  20. Nosrati, H., N. Ehsani, H. Baharvandi, M. Mohtashami, H. Abdizadeh and V. Mazinani, 2014. Effect of primary materials ratio and their stirring time on SiC nanoparticle production efficiency through sol-gel process. Am. J. Eng. Res., 3: 317-321.
  21. Samariha, A., A. Bastani, M. Nemati, M. Kiaei, H. Nosrati and M. Farsi, 2013. Investigation of the mechanical properties of bagasse flour/polypropylene composites. Mech. Composite Mater., 49: 447-454.
    CrossRef  |  Direct Link  |  
  22. Nosrati, H., M.S. Hosseini, M. Nemati and A. Samariha, 2013. Production of TiO2 nano-rods using combination of sol-gel and electrophoretic methods. Asian J. Chem., 25: 3484-3486.
    CrossRef  |  Direct Link  |  
  23. Nosrati, H., S.H. Tabaian, H. Baharvandi, M. Nemati and A. Samariha, 2012. Effect of nickel pulse electroplating parameters on ST12 steel.
    Middle-East J. Sci. Res., 12: 1288-1291.
  24. Mazloumpour, M., F. Rahmani, N. Ansari, H. Nosrati and A.H. Rezaei, 2011. Study of wicking behavior of water on woven fabric using magnetic induction technique. J. Text. Inst., 102: 559-567.
    CrossRef  |  Direct Link  |