Dr. Amr Mohammed Sadek

Researcher
National Institute of Standards and Technology, U.S.A.


Highest Degree
Ph.D. in Theoretical Nuclear Physics from Fayoum University, Egypt

Share this Profile

Area of Interest:

Physics
Nuclear Physics
Physics Theories
Applied Physics
Radiation Effects

Selected Publications

  1. Soliman, H.A., M.A. Hassan, E. Esmat, A.M. Sadek and A.M. Maghraby, 2017. Thermally enhanced TLD output: Impact on the dose response. Applied Radiat. Isotopes, 125: 60-65.

  2. Sadek, A.M., M.M. Hassan, E. Esmat and H.M. Eissa, 2017. A new approach to the analysis of thermoluminescence glow-curve of TLD-600 dosimeters following Am-241 Alpha particles irradiation. Radiat. Protect. Dosimetry, 10.1093/rpd/ncx105.
    CrossRef  |  Direct Link  |  

  3. Sadek, A.M., F. Khamis, G.S. Polymeris, E. Carinou and G. Kitis, 2017. Similarities and differences between two different types of the thermoluminescence dosimeters belonging to the LiF family. Phys. Status Solidi, Vol. 14. 10.1002/pssc.20160220.
    CrossRef  |  Direct Link  |  

  4. Sadek, A.M. and G. Kitis, 2017. A critical look at the kinetic parameter values used in simulating the thermoluminescence glow-curve. J. Luminescence, 183: 533-541.

  5. Farag, M.A., A.M. Sadek, H.A. Shousha, A.A. El-Hagg, M.R. Atta and G. Kitis, 2017. Radiation damage and sensitization effects on thermoluminescence of LiF: Mg, Ti (TLD-700). Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 407: 180-190.
    CrossRef  |  Direct Link  |  

  6. Hassan, G.M., E. Aboelezz, A.M. Sadek and M.A. Sharaf, 2016. Glow curve deconvolution of nano barium strontium sulfate and thermoluminescence trap centers behavior with gamma doses. J. Luminescence, 179: 616-621.
    CrossRef  |  Direct Link  |  

  7. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2015. Properties of the thermoluminescence glow peaks simulated by the interactive multiple‐trap system (IMTS) model. Phys. Status Solidi (B), 252: 721-729.
    CrossRef  |  Direct Link  |  

  8. Sadek, A.M., H.M. Eissa, A.M. Bash, E. Carinou, P. Askounis and G. Kitis, 2015. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model. Applied Radiat. Isotopes, 95: 214-222.
    CrossRef  |  Direct Link  |  

  9. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2014. Resolving the limitation of the peak fitting and peak shape methods in the determination of the activation energy of thermoluminescence glow peaks. J. Luminescence, 146: 418-432.
    CrossRef  |  Direct Link  |  

  10. Sadek, A.M., H.M. Eissa, A.M. Basha and G. Kitis, 2014. Development of the peak fitting and peak shape methods to analyze the thermoluminescence glow-curves generated with exponential heating function. Nucl. Instrument Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 330: 103-107.
    CrossRef  |  Direct Link  |  

  11. Abo-Elmagd, M. and A.M. Sadek, 2014. Development of a model using the MATLAB System identification toolbox to estimate 222Rn equilibrium factor from CR-39 based passive measurements. J. Environ. Radioactivity, 138: 33-37.
    CrossRef  |  Direct Link  |  

  12. Sadek, A.M., 2013. Test of the accuracy of the computerized glow curve deconvolution algorithm for the analysis of thermoluminescence glow curves. Nucl. Instruments Methods Phys. Res. Sect. A: Accelerat. Spectrom. Detectors Assoc. Equipment, 712: 56-61.
    CrossRef  |  Direct Link  |  

  13. Abd El-Hafez, A.I., M.N. Yasin and A.M. Sadek, 2011. GCAFIT-a new tool for glow curve analysis in thermoluminescence nanodosimetry. Nucl. Instruments Methods Phys. Res. Sect. A: Accelerat. Detectors Assoc. Equipment, 637: 158-163.
    CrossRef  |  Direct Link  |