Dr. Ceclia Calado

Professor
Lisbon High Engineering Institute, Portugul


Highest Degree
Ph.D. in Biotechnology from Lisbon University, Portugal

Share this Profile

Area of Interest:

Biomedical Sciences
Biotechnology
Biomedical Engineering
Laboratory Medicine
Health Sciences

Selected Publications

  1. Ribeiro da Cunha, B., L.P. Fonseca and C.R. Calado, 2019. Antibiotic discovery: Where have we come from, where do we go?. Antibiotics, Vol. 8. 10.3390/antibiotics8020045.
    CrossRef  |  Direct Link  |  

  2. Marques, V., B. Cunha, A. Couto, P. Sampaio, L.P. Fonseca, S. Aleixo and C.R. Calado, 2019. Characterization of gastric cells infection by diverse Helicobacter pylori strains through Fourier-transform infrared spectroscopy. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy, 210: 193-202.
    CrossRef  |  Direct Link  |  

  3. Cunha, B., L.P. Fonseca and C.R.C. Calado, 2019. A phenotypic screening bioassay for Escherichia coli stress and antibiotic responses based on Fourier‐transform infrared (FTIR) spectroscopy and multivariate analysis. Applied Microbiol., 127: 1776-1789.
    CrossRef  |  Direct Link  |  

  4. Lopes, M.B. and C.R. Calado, 2018. Assessing plasmid bioprocess reproducibility and C‐source uptake stage through multivariate analysis of offline and online data. J. Chem. Technol. Biotechnol., 93: 3056-3066.
    CrossRef  |  Direct Link  |  

  5. Lopes, M., A. Amorim, C. Calado and P.R. Costa, 2018. Determination of cell abundances and paralytic shellfish toxins in cultures of the dinoflagellate gymnodinium catenatum by fourier transform near infrared spectroscopy. J. Marine Sci. Eng., Vol. 6. 10.3390/jmse6040147.
    CrossRef  |  Direct Link  |  

  6. Sampaio, P.N.S. and C.R.C. Calado, 2017. Comparative analysis of different transformed Saccharomyces cerevisiae strains based on high-throughput Fourier transform infrared spectroscopy. J. Biotechnol., 260: 1-10.
    CrossRef  |  Direct Link  |  

  7. Sales, K.C., F. Rosa, B.R. Cunha, P.N. Sampaio, M.B. Lopes and C.R. Calado, 2017. Metabolic profiling of recombinant Escherichia coli cultivations based on high‐throughput FT‐MIR spectroscopic analysis. Biotechnol. Progress, 33: 285-298.
    CrossRef  |  Direct Link  |  

  8. Lopes, M.B., C.R. Calado, M.A. Figueiredo and J.M. Bioucas-Dias, 2017. Does nonlinear modeling play a role in plasmid bioprocess monitoring using fourier transform infrared spectra?. Applied Spectroscopy, 71: 1148-1156.
    CrossRef  |  Direct Link  |  

  9. Sampaio, P.N., K.C. Sales, F. Rosa, M.B. Lopes and C.R.C. Calado, 2016. High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production. J. Ind. Microbiol. Biotechnol., 44: 49-61.
    CrossRef  |  Direct Link  |  

  10. Rosa, F., K.C. Sales, J.G. Carmelo, A. Fernandes‐Platzgummer, C.L. da Silva, M.B. Lopes and C.R. Calado, 2016. Monitoring the ex‐vivo expansion of human mesenchymal stem/stromal cells in xeno‐free microcarrier‐based reactor systems by MIR spectroscopy. Biotechnol. Progress, 32: 447-455.
    CrossRef  |  Direct Link  |  

  11. Sales, K.C., F. Rosa, P.N. Sampaio, L.P. Fonseca, M.B. Lopes and C.R. Calado, 2015. In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production. Appl. Spectros., 69: 760-772.
    Direct Link  |  

  12. Rosa, F., K.C. Sales, B.R. Cunha, A. Couto, M.B. Lopes and C.R. Calado, 2015. A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses. Anal. Bioanal. Chem., 407: 8097-8108.
    Direct Link  |  

  13. Lopes, M.B., G.A. Gonçalves, D. Felício‐Silva, K.L. Prather, G.A. Monteiro, D.M. Prazeres and C.R. Calado, 2015. In situ NIR spectroscopy monitoring of plasmid production processes: effect of producing strain, medium composition and the cultivation strategy. J. Chem. Technol. Biotechnol., 90: 255-261.
    CrossRef  |  Direct Link  |  

  14. Sampaio, P.N., K.C. Sales, F.O. Rosa, M.B. Lopes and C.R. Calado, 2014. In situ near infrared spectroscopy monitoring of cyprosin production by recombinant saccharomyces cerevisiae strains. J. Biotechnol., 188: 148-157.
    Direct Link  |  

  15. Lopes, M.B., G. Martins and C.R.C. Calado, 2014. Kinetic modeling of plasmid bioproduction in Escherichia coli cultures conducted in different media compositions. J Biotechnol., 186: 38-48.
    CrossRef  |  Direct Link  |  

  16. Scholz, T., V.V. Lopes and C.R. Calado, 2012. High‐throughput analysis of the plasmid bioproduction process in Escherichia coli by FTIR spectroscopy. Biotechnol. Bioeng., 109: 2279-2285.
    CrossRef  |  Direct Link  |  

  17. Cadete, A., L. Figueiredo, R. Lopes, C.C.R. Calado, A.J. Almeida and L.M.D. Goncalves, 2012. Development and characterization of a new plasmid delivery system based on chitosan-sodium deoxycholate nanoparticles. Eur. J. Pharm. Sci., 45: 451-458.
    Direct Link  |  

  18. Vitoriano, I., A. Rocha Goncalves, T. Carvalho, M. Oleastro, C.R. Calado and M. Roxo Rosa, 2011. Antigenic diversity among Portuguese clinical isolates of Helicobacter pylori. Helicobacter, 16: 153-168.
    Direct Link  |  

  19. Sampaio, P.N., L. Sousa, C.R.C. Calado, M.S. Pais and L.P. Fonseca, 2011. Use of chemometrics in the selection of a saccharomyces cerevisiae expression system for recombinant cyprosin B production. Biotechnol. Lett., 33: 2111-2119.
    Direct Link  |  

  20. Mendes, S., F. Camacho, T. Silva, C.R. Calado, A.C. Serra, A.M.D.A. Rocha Gonsalves and M. Roxo Rosa, 2011. A nonionic porphyrin as a noninterfering DNA antibacterial agent. Photochem. Photobiol., 87: 1395-1404.
    Direct Link  |  

  21. Sampaio, P.N., C.R. Calado, L. Sousa, D.C. Bressler, M.S. Pais and L.P. Fonseca, 2010. Optimization of the culture medium composition using response surface methodology for new recombinant cyprosin B production in bioreactor for cheese production. Eur. Food Res. Technol., 231: 339-346.
    Direct Link  |  

  22. Silva, T., P. Lima, M. Roxo Rosa, S. Hageman, L.P. Fonseca and C.R.C. Calado, 2009. Prediction of dynamic plasmid production by recombinant escherichia coli fed-batch cultivations with a generalized regression neural network. Chem. Biochem. Eng. Q., 23: 419-427.
    Direct Link  |  

  23. Calado, C.R.C., M. Brandao, J. Biscaia, J.M.S. Cabral and L.P. Fonseca, 2009. Effect of tween-80 on stability and secretion of hydrophobic tagged-cutinases. Chem. Biochem. Eng. Q., 23: 411-417.
    Direct Link  |  

  24. Lienqueo, M.E., O. Salazar, C.R.C. Calado, L.P. Fonseca and J.M.S. Cabral, 2008. Influence of tryptophan tags on the purification of cutinase, secreted by a recombinant saccharomyces cerevisiae, using cationic expanded bed adsorption and hydrophobic interaction chromatography. Biotechnol. Lett., 30: 1353-1358.
    Direct Link  |  

  25. Lienqueo, M.E., O. Salazar, K. Henriquez, C.R.C. Calado, L.P. Fonseca and J.M.S. Cabral, 2007. Prediction of retention time of cutinases tagged with hydrophobic peptides in hydrophobic interaction chromatography. J. Chromatogr. A, 1154: 460-463.
    Direct Link  |  

  26. Almeida, C.F., C.R. Calado, S.A. Bernardino, J. Cabral and L.P. Fonseca, 2006. A flow injection analysis system for on‐line monitoring of cutinase activity at outlet of an expanded bed adsorption column almost in real time. J. Chem. Technol. Biotechnol., 81: 1678-1684.
    Direct Link  |  

  27. Vojinovic, V., C.R. Calado, A.I. Silva, M. Mateus, J.M.S. Cabral and L.P. Fonseca, 2005. Micro-analytical GO/HRP bioreactor for glucose determination and bioprocess monitoring. Biosens. Bioelectron., 20: 1955-1961.
    Direct Link  |  

  28. Ferreira, B.S., C.R. Calado, F. Van Keulen, L.P. Fonseca, J.M. Cabral and M.M. da Fonseca, 2004. Recombinant saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. J. Biotechnol., 109: 159-167.
    Direct Link  |  

  29. Calado, C.R., B.S. Ferreira, M.M. da Fonseca, J.M. Cabral and L.P. Fonseca, 2004. Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biotechnol., 109: 147-158.
    Direct Link  |  

  30. Ferreira, B.S., C.R.C. Calado, F.V. Keulen, L.P. Fonseca, J.M.S. Cabral and M.M.R. Da Fonseca, 2003. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: Strain physiological aspects. Applied Microbial. Biotechnol., 61: 69-76.
    CrossRef  |  Direct Link  |  

  31. Cunha, M.T., M.J.L. Costa, C.R.C. Calado, L.P. Fonseca, M.R. Aires Barros and J.M.S. Cabral, 2003. Integration of production and aqueous two-phase systems extraction of extracellular fusarium solani pisi cutinase fusion proteins. J. Biotechnol., 100: 55-64.
    Direct Link  |  

  32. Calado, C.R., C. Almeida, J.M. Cabral and L.P. Fonseca, 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng., 96: 141-148.
    Direct Link  |  

  33. Calado, C.R.C., M.A. Taipa, J.M.S. Cabral and L.P. Fonseca, 2002. Optimisation of culture conditions and characterisation of cutinase produced by recombinant Saccharomyces cerevisiae. Enzyme Microbial. Technol., 31: 161-170.
    CrossRef  |  Direct Link  |  

  34. Calado, C.R.C., J. Cabral and L.P. Fonseca, 2002. Effect of saccharomyces cerevisiae fermentation conditions on expanded bed adsorption of heterologous cutinase. J. Chem. Technol. Biotechnol., 77: 1231-1237.
    Direct Link  |  

  35. Calado, C.R., S.M. Monteiro, J.M. Cabral and L.P. Fonseca, 2002. Effect of pre-fermentation on the production of cutinase by a recombinant saccharomyces cerevisiae. J. Biosci. Bioeng., 93: 354-359.
    Direct Link  |  

  36. Calado, C.R., M. Mannesse, M. Egmond, J. Cabral and L.P. Fonseca, 2002. Production of wild‐type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains. Biotechnol. Bioeng., 78: 692-698.
    CrossRef  |  

  37. Calado, C.R., G.E. Hamilton, J.M. Cabral, L.P. Fonseca and A. Lyddiatt, 2001. Direct product sequestration of a recombinant cutinase from batch fermentations of saccharomyces cerevisiae. Bioseparation, 10: 87-97.
    Direct Link  |