Dr. Claudio Cuevas

Professor
Department of Mathematics, Federal University of Pernambuco, Brazil


Highest Degree
Ph.D. in Mathematics from Federal University of Pernambuco, Brazil

Share this Profile

Biography

Dr. Claudio Cuevas is currently working as Faculty member of Federal University of Pernambuco, Brazil. He has completed his Ph.D. in Mathematics from same University. Previously he was appointed as Visiting Professor at University of La Frontera Temuco, Chile, CNRS Research Fellow at Universite de Nantes Nantes, France, and Visiting Professor at University of ICMC - Sao Carlos, and University of Santiago Santiago, Chile, and Research Visitor at Universite de Nantes, Nantes, France, and Visiting Professor at University of Chile Santiago, Chile. His main area of research interest focuses on Difference Equations, Periodicity and Ergodicity, Dispersive Estimates, Fractional Differential Equations, Functional Differential Equations, and Integral and Integro-Differential Equations. Dr. Claudio received honor includes Prize University of Santiago, Chile, best graduating student, invited as main speakers to several international mathematical congress, and Research Fellow under Agreement Brazil/France in Mathematics, CNPq-CNRS. He is also serving as member of 27 scientific committees. He has published 1 book, and 89 research articles in journals contributed as author/co-author. He also directed 11 PhD thesis, and 1 postdoctoral student. He is member of editorial board in more than 32 journals and referee for 58 journals.

Area of Interest:

Mathematics
Difference Equations
Functional Differential Equations
Integro-Differential Equations
Dispersive Estimates

Selected Publications

  1. Azevedo, J., C. Cuevas, J. Dantas and C. Silva, 2023. On the fractional chemotaxis Navier-Stokes system in the critical spaces. Am. Inst. Math. Sci., 28: 538-559.
    CrossRef  |  Direct Link  |  

  2. Bezerra, M., C. Cuevas, C. Silva and H. Soto, 2022. On the fractional doubly parabolic Keller-Segel system modelling chemotaxis. Sci. China Math., 65: 1827-1874.
    CrossRef  |  Direct Link  |  

  3. Azevedo, J., M. Bezerra, C. Cuevas and H. Soto, 2022. Well-posedness and asymptotic behavior for the fractional Keller-Segel system in critical Besov-Herz-type spaces. Math Methods Appl. Sci., 45: 6268-6287.
    CrossRef  |  Direct Link  |  

  4. Caicedo, A., C. Cuevas, É. Mateus and A. Viana, 2021. Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces. Chaos, Solitons Fractals, Vol. 145. 10.1016/j.chaos.2021.110756.
    CrossRef  |  Direct Link  |  

  5. Cuevas, C., C. Silva and H. Soto, 2020. On the time-fractional Keller-Segel model for chemotaxis. Math. Meth. Appl. Sci., 43: 769-798.
    CrossRef  |  Direct Link  |  

  6. Cecílio, D.L., C. Cuevas, J.G. Mesquita and P. Ubilla, 2019. Existence of a positive solution and numerical solution for some elliptic superlinear problem. J. Differ. Equations, 266: 1338-1356.
    CrossRef  |  Direct Link  |  

  7. Azevedo, J., C. Cuevas and E. Henriquez, 2019. Existence and asymptotic behaviour for the time‐fractional Keller–Segel model for chemotaxis. Math. Nachrichten, 292: 462-480.
    CrossRef  |  Direct Link  |  

  8. Bernardo, F., C. Cuevas and H. Soto, 2018. Qualitative theory for volterra difference equations. Math. Methods Appl. Sci., 41: 5423-5458.
    CrossRef  |  Direct Link  |  

  9. Aparcana, A., C. Cuevas, H. Henríquez and H. Soto, 2018. Fractional evolution equations and applications. Math. Methods Appl. Sci., 41: 1256-1280.
    CrossRef  |  Direct Link  |  

  10. Aparcana, A., C. Cuevas and H. Soto, 2018. About a composite fractional relaxation equation via regularized families. Sci. Iran. Transact. B Mech. Eng., 25: 329-338.
    CrossRef  |  Direct Link  |  

  11. Siracusa, G., H.R. Henríquez and C. Cuevas, 2017. Existence results for fractional integro-differential inclusions with state-dependent delay. Nonautonomous Dyn. Syst., 4: 62-77.
    CrossRef  |  Direct Link  |  

  12. Henríquez, H.R. and C. Cuevas, 2017. Second order abstract neutral functional differential equations. J. Dynam. Diff. Equat., 29: 615-653.
    CrossRef  |  Direct Link  |  

  13. Henriquez, H.R, C. Cuevas, J.C. Pozo and H. Soto, 2017. Existence of solutions for a class of abstract neutral differential equations. Discrete Continuous Dyn. Syst., 37: 2455-2482.
    CrossRef  |  Direct Link  |  

  14. Azevedo, J., C. Cuevas and H. Soto, 2017. Qualitative theory for strongly damped wave equations. Math. Methods Applied Sci. 10.1002/mma.4504.
    CrossRef  |  

  15. Azevedo, J., C. Cuevas and H. Soto, 2017. Qualitative theory for strongly damped wave equations. Math. Method Appl. Sci., 40: 6944-6975.
    CrossRef  |  Direct Link  |  

  16. De Andrade, B., C. Cuevas, C. Silva and H. Soto, 2016. Asymptotic periodicity for flexible structural systems and applications. Acta Applicandae Mathematicae, 143: 105-164.
    CrossRef  |  Direct Link  |  

  17. De Andrade, B., C. Cuevas and H. Soto, 2016. On fractional heat equations with non-local initial conditions. Proc. Edinburgh Math. Soc., 59: 65-76.
    CrossRef  |  Direct Link  |  

  18. Cuevas, C., H. Soto and P. Ubilla, 2016. Discrete problems associated to elliptic equations. Math. Methods Applied Sci., 39: 5557-5569.
    CrossRef  |  Direct Link  |  

  19. Cuevas, C., F. Dantas and H. Soto, 2016. Almost periodicity for a nonautonomous discrete dispersive population model. Numer. Funct. Anal. Optimiz., 37: 1503-1516.
    CrossRef  |  Direct Link  |  

  20. Andrade, F., C. Cuevas and H.R. Henriquez, 2016. Periodic solutions of abstract functional differential equations with state-dependent delay. Math. Methods Applied Sci., 39: 3897-3909.
    CrossRef  |  Direct Link  |  

  21. Henriquez, H.R., C. Cuevas and A. Caicedo, 2015. Almost periodic solutions of partial differential equations with delay. Adv. Difference Equations, Vol. 2015. 10.1186/s13662-015-0388-8.
    CrossRef  |  Direct Link  |  

  22. Henriquez, H.R. and C. Cuevas, 2015. Second Order Abstract Neutral Functional Differential Equations. J. Dyn. Differ. Equ., 10.1007/s10884-015-9483-5.
    CrossRef  |  

  23. De Andrade, B., C. Cuevas, J. Liang and H. Soto, 2015. Periodicity and ergodicity for abstract evolution equations with critical nonlinearities. Adv. Difference Equations, Vol. 2015. 10.1186/s13662-014-0350-1.
    CrossRef  |  Direct Link  |  

  24. Aparcana, A., C. Cuevas and H. Soto, 2015. About a composite fractional relaxation equation via regularized families. Trans. Mech. Eng., Q1: 1-9.
    Direct Link  |  

  25. Andrade, F., C. Cuevas, F. Dantas and H. Soto, 2015. Lp-boundedness and topological structure of solutions for flexible structural systems. Math. Methods Applied Sci., 38: 5139-5159.
    CrossRef  |  Direct Link  |  

  26. Andrade, F., C. Cuevas, C. Silva and H. Soto, 2015. Asymptotic periodicity for hyperbolic evolution equations and applications. Applied Math. Comput., 269: 169-195.
    CrossRef  |  Direct Link  |  

  27. Ravi, P.A., C. Cuevas and C. Lizama, 2014. Regularity of Difference Equations on Banach Spaces. Springer International Publishing, Switzerland, Pages: 232.
    CrossRef  |  

  28. Henriquez, H.R. and C. Cuevas, 2014. Approximate controllability of second‐order distributed systems. Math. Methods Applied Sci., 37: 2372-2392.
    CrossRef  |  Direct Link  |  

  29. Cuevas, C., M. Choquehuanca and H. Soto, 2014. Asymptotic analysis for Volterra difference equations. Asymptotic Anal., 88: 125-164.

  30. Cuevas, C., H.R. Henriquez and H. Soto, 2014. Asymptotically periodic solutions of fractional differential equations. Applied Math. Comput., 236: 524-545.
    CrossRef  |  Direct Link  |  

  31. Castro, A., C. Cuevas, F. Dantas and H. Soto, 2014. About the behavior of solutions for Volterra difference equations with infinite delay. J. Comput. Applied Math., 255: 44-59.
    CrossRef  |  Direct Link  |  

  32. Cardoso, F., C. Cuevas and G. Vodev, 2014. Semi-classical dispersive estimates. Mathematische Zeitschrift, 278: 251-277.
    CrossRef  |  Direct Link  |  

  33. Cardoso, F., C. Cuevas and G. Vodev, 2014. Resolvent estimates for perturbations by large magnetic potentials. J. Math. Phys., Vol. 55. 10.1063/1.4863895.
    CrossRef  |  Direct Link  |  

  34. Henriquez, H.R., C. Cuevas and A. Caicedo, 2013. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Commun. Pure Applied Anal., 12: 2031-2068.
    Direct Link  |  

  35. Henriquez, H.R. and C. Cuevas, 2013. Almost automorphy for abstract neutral differential equations via control theory. Annali di Matematica Pura ed Applicata, 192: 393-405.
    CrossRef  |  Direct Link  |  

  36. Cuevas, C., F. Dantas, M. Choquehuanca and H. Soto, 2013. lp-boundedness properties for Volterra difference equations. Applied Math. Comput., 219: 6986-6999.
    CrossRef  |  Direct Link  |  

  37. Cuevas, C., C. Lizama and H. Soto, 2013. Asymptotic periodicity for strongly damped wave equations. Abstract Applied Anal., Vol. 2013. 10.1155/2013/308616.
    CrossRef  |  Direct Link  |  

  38. Cuevas, C. and C. Lizama, 2013. Existence of S-asymptotically ω-periodic solutions for two-times fractional order differential equations. Southeast Asian Bull. Math., 37: 683-690.

  39. Cardoso, F., C. Cuevas and G. Vodev, 2013. High frequency resolvent estimates for perturbations by large long-range magnetic potentials and applications to dispersive estimates. Annales Henri Poincare, 14: 95-117.
    CrossRef  |  Direct Link  |  

  40. Agarwal, R.P., C. Cuevas and F. Dantas, 2013. Almost automorphy profile of solutions for difference equations of Volterra type. J. Applied Math. Comput., 42: 1-18.
    CrossRef  |  Direct Link  |  

  41. De Andrade, B., C. Cuevas and H. Soto, 2013. On fractional heat equations with non-local initial conditions. Proc. Edinburgh Math. Soc. 10.1017/S0013091515000590.
    CrossRef  |  Direct Link  |  

  42. De Andrade, B., C. Cuevas and E. Henriquez, 2012. Almost automorphic solutions of hyperbolic evolution equations. Banach J. Math. Anal., 6: 90-100.
    Direct Link  |  

  43. Cuevas, C., H.R. Henriquez and C. Lizama, 2012. On the existence of almost automorphic solutions of Volterra difference equations. J. Difference Equations Applic., 18: 1931-1946.
    CrossRef  |  Direct Link  |  

  44. Cuevas, C., G.M. N'guerekata and A. Sepulveda, 2012. Pseudo almost automorphic solutions to fractional differential and integro-differential equations. Commun. Applied Anal., 16: 131-152.

  45. Caicedo, A., C. Cuevas, G.M. Mophou and G.M. N'Guerekata, 2012. Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces. J. Franklin Inst., 349: 1-24.
    CrossRef  |  Direct Link  |  

  46. Andrade, B., C. Cuevas and E. Henriquez, 2012. Asymptotic periodicity and almost automorphy for a class of Volterra integro‐differential equations. Math. Methods Applied Sci., 35: 795-811.
    CrossRef  |  Direct Link  |  

  47. Agarwal, R.P., J.P.C. dos Santos and C. Cuevas, 2012. Analytic resolvent operator and existence results for fractional integro-differential equations. J. Abstract Differential Equations Applic., 2: 26-47.

  48. Agarwal, R.P., C. Cuevas and M.V. Frasson, 2012. Semilinear functional difference equations with infinite delay. Math. Comput. Model., 55: 1083-1105.
    CrossRef  |  Direct Link  |  

  49. Henriquez, H.R., C. Cuevas, M. Rabelo and A. Caicedo, 2011. Stabilization of distributed control systems with delay. Syst. Control Lett., 60: 675-682.
    CrossRef  |  Direct Link  |  

  50. Dos Santos, J.P.C., M.M. Arjunan and C. Cuevas, 2011. Existence results for fractional neutral integro-differential equations with state-dependent delay. Comput. Math. Applic., 62: 1275-1283.
    CrossRef  |  Direct Link  |  

  51. Dos Santos, J.P.C., C. Cuevas and B. de Andrade, 2011. Existence results for a fractional equations with state-dependent delay. Adv. Difference Equations, Vol. 2011. 10.1155/2011/642013.
    CrossRef  |  Direct Link  |  

  52. Cuevas, C., M. Pierri and A. Sepulveda, 2011. Weighted S-asymptotically ω-periodic solutions of a class of fractional differential equations. Adv. Difference Equations, Vol. 2011. .
    Direct Link  |  

  53. Cuevas, C., A. Sepulveda and H. Soto, 2011. Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations. Applied Math. Comput., 218: 1735-1745.
    CrossRef  |  Direct Link  |  

  54. Cuevas, C. and H. Henriquez, 2011. Solutions of second order abstract retarded functional differential equations on the line. J. Nonlinear Convex Anal., 12: 225-240.
    Direct Link  |  

  55. Castro, A. and C. Cuevas, 2011. Perturbation theory, stability, boundedness and asymptotic behaviour for second order evolution equation in discrete time. J. Difference Equations Applic., 17: 327-358.
    CrossRef  |  Direct Link  |  

  56. Caicedo, A., C. Cuevas and H.R. Henriquez, 2011. Asymptotic periodicity for a class of partial integrodifferential equations. ISRN Math. Anal., Vol. 2011. 10.5402/2011/537890.
    CrossRef  |  Direct Link  |  

  57. Agarwal, R.P., C. Cuevas, H. Soto and M. El-Gebeily, 2011. Asymptotic periodicity for some evolution equations in Banach spaces. Nonlinear Anal.: Theory Methods Applic., 74: 1769-1798.
    CrossRef  |  Direct Link  |  

  58. Agarwal, R.P., C. Cuevas and H. Soto, 2011. Pseudo-almost periodic solutions of a class of semilinear fractional differential equations. J. Applied Math. Comput., 37: 625-634.
    CrossRef  |  Direct Link  |  

  59. Agarwal, R.P., B. de Andrade, C. Cuevas and E. Henriquez, 2011. Asymptotic periodicity for some classes of integro-differential equations and applications. Adv. Math. Sci. Applic., 21: 1-31.

  60. Henriquez, H. and C. Cuevas, 2010. Approximate controllability of abstract discrete-time systems. Adv. Difference Equations, Vol. 2010. 10.1155/2010/695290.
    CrossRef  |  Direct Link  |  

  61. Dos Santos, J.P.C. and C. Cuevas, 2010. Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations. Applied Math. Lett., 23: 960-965.
    CrossRef  |  Direct Link  |  

  62. De Andrade, B. and C. Cuevas, 2010. S-asymptotically ω-periodic and asymptotically ω-periodic solutions to semi-linear Cauchy problems with non-dense domain. Nonlinear Anal.: Theory Methods Applic., 72: 3190-3208.
    CrossRef  |  Direct Link  |  

  63. Cuevas, C., M. Rabelo and H. Soto, 2010. Pseudo-almost automorphic solutions to a class of semilinear fractional differential equations. Commun. Applied Nonlinear Anal., 17: 31-48.

  64. Cuevas, C., L. del Campo and C. Vidal, 2010. Weighted exponential trichotomy of difference equations and asymptotic behavior of nonlinear systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17: 377-400.
    Direct Link  |  

  65. Cuevas, C., G.M. N'Guerekata and M. Rabelo, 2010. Mild solutions for impulsive neutral functional differential equations with state-dependent delay. Semigroup Forum, 80: 375-390.
    CrossRef  |  Direct Link  |  

  66. Cuevas, C. and M.V. Frasson, 2010. Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations. Electron. J. Differential Equations, 2010: 1-5.
    Direct Link  |  

  67. Cuevas, C. and J.C. de Souza, 2010. Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal.: Theory Methods Applic., 72: 1683-1689.
    CrossRef  |  Direct Link  |  

  68. Cuevas, C. and J.C. de Souza, 2010. A perturbation theory for the discrete harmonic oscillator equation. J. Difference Equations Applic., 16: 1413-1428.
    CrossRef  |  Direct Link  |  

  69. Cuevas, C. and C. Lizama, 2010. Semilinear evolution equations on discrete time and maximal regularity. J. Math. Anal. Applic., 361: 234-245.
    CrossRef  |  Direct Link  |  

  70. Cuevas, C. and C. Lizama, 2010. S-asymptotically ω-periodic solutions for semilinear Volterra equations. Math. Meth. Applied Sci., 33: 1628-1636.
    CrossRef  |  Direct Link  |  

  71. Castro, A., C. Cuevas and C. Lizama, 2010. Well-posedness of second order evolution equation on discrete time. J. Difference Equations Applic., 16: 1165-1178.
    CrossRef  |  Direct Link  |  

  72. Caicedo, A. and C. Cuevas, 2010. S-asymptotically w-periodic solutions of abstract partial neutral integro-differential equations. Funct. Differential Equations, 17: 387-405.
    Direct Link  |  

  73. Agarwal, R.P., B. de Andrade and C. Cuevas, 2010. Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal.: Real World Applic., 11: 3532-3554.
    CrossRef  |  Direct Link  |  

  74. Agarwal, R.P., B. de Andrade and C. Cuevas, 2010. On type of periodicity and ergodicity to a class of integral equations with infinite delay. J. Nonlinear Convex Anal., 11: 309-333.

  75. Agarwal, R.P., B. de Andrade and C. Cuevas, 2010. On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Difference Equations, Vol. 2010. .
    Direct Link  |  

  76. De Andrade, B., C. Cuevas and S. Reich, 2009. Almost automorphic and pseudo-almost automorphic solutions to semilinear evolution equations with nondense domain. J. Inequalities Applic., Vol. 2009. .
    Direct Link  |  

  77. De Andrade, B. and C. Cuevas, 2009. Compact almost automorphic solutions to semilinear Cauchy problems with non-dense domain. Applied Math. Comput., 215: 2843-2849.
    CrossRef  |  Direct Link  |  

  78. Cuevas, C., E. Hernandez and M. Rabelo, 2009. The existence of solutions for impulsive neutral functional differential equations. Comput. Math. Applic., 58: 744-757.
    CrossRef  |  Direct Link  |  

  79. Cuevas, C. and L. del Campo, 2009. Asymptotic expansion for difference equations with infinite delay. Asian-Eur. J. Math., 2: 19-40.
    CrossRef  |  Direct Link  |  

  80. Cuevas, C. and J.C. de Souza, 2009. S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations. Applied Math. Lett., 22: 865-870.
    CrossRef  |  Direct Link  |  

  81. Cuevas, C. and E. Hernandez, 2009. Pseudo-almost periodic solutions for abstract partial functional differential equations. Applied Math. Lett., 22: 534-538.
    CrossRef  |  Direct Link  |  

  82. Cuevas, C. and C. Lizama, 2009. Well posedness for a class of flexible structure in Holder spaces. Math. Problems Eng., Vol. 2009. 10.1155/2009/358329.
    CrossRef  |  Direct Link  |  

  83. Cuevas, C. and C. Lizama, 2009. Almost automorphic solutions to integral equations on the line. Semigroup Forum, 79: 461-472.
    CrossRef  |  Direct Link  |  

  84. Castro, A., C. Cuevas, C. Lizama and M. Cecchi, 2009. Maximal regularity of the discrete harmonic oscillator equation. Adv. Difference Equations, Vol. 2009. .
    Direct Link  |  

  85. Cardoso, F., C. Cuevas and G. Vodev, 2009. High frequency dispersive estimates for the Schrodinger equation in high dimensions. Asymptotic Anal., 71: 207-225.

  86. Cardoso, F., C. Cuevas and G. Vodev, 2009. Dispersive estimates for the Schrodinger equation with potentials of critical regularity. Cubo, 11: 57-70.
    Direct Link  |  

  87. Cardoso, F., C. Cuevas and G. Vodev, 2009. Dispersive estimates for the Schrodinger equation in dimensions four and five. Asymptotic Anal., 62: 125-145.

  88. Cardoso, F. and C. Cuevas, 2009. Exponential dichotomy and boundedness for retarded functional difference equations. J. Difference Equations Applic., 15: 261-290.
    CrossRef  |  Direct Link  |  

  89. Vidal, C., C. Cuevas and L. del Campo, 2008. Weighted exponential trichotomy of difference equations. Dynamic Syst. Applic., 5: 489-495.

  90. Cuevas, C. and C. Vidal, 2008. Weighted exponential trichotomy of linear difference equations. Dynamics Continuous Discrete Impulsive Syst. Ser. A, 15: 353-379.
    Direct Link  |  

  91. Cuevas, C. and C. Lizama, 2008. Semilinear evolution equations of second order via maximal regularity. Adv. Difference Equations, Vol. 2008. .
    Direct Link  |  

  92. Cuevas, C. and C. Lizama, 2008. Almost automorphic solutions to a class of semilinear fractional differential equations. Applied Math. Lett., 21: 1315-1319.
    CrossRef  |  Direct Link  |  

  93. Cardoso, F., C. Cuevas and G. Vodev, 2008. Weighted dispersive estimates for solutions of the Schrodinger equation. Serdica Math. J., 34: 39-54.

  94. Ashyralyev, A., C. Cuevas and S. Piskarev, 2008. On well-posedness of difference schemes for abstract elliptic problems in Lp([0,T];E) spaces. Numer. Funct. Anal. Optim., 29: 43-65.
    Direct Link  |  

  95. Cuevas, C. and C. Lizama, 2007. Maximal regularity of discrete second order Cauchy problems in Banach spaces. J. Difference Equations Applic., 13: 1129-1138.
    CrossRef  |  Direct Link  |  

  96. Cuevas, C. and G. Vodev, 2006. Lp'-Lp decay estimates of solutions to the wave equation with a short-range potential. Asymptotic Anal., 46: 29-42.

  97. Cuevas, C. and C. Vidal, 2006. A note on discrete maximal regularity for functional difference equations with infinite delay. Adv. Difference Equations, Vol. 2006. .
    Direct Link  |  

  98. Cuevas, C. and L. del Campo, 2005. An asymptotic theory for retarded functional difference equations. Comput. Math. Applic., 49: 841-855.
    CrossRef  |  Direct Link  |  

  99. Cardoso, F., C. Cuevas and G. Vodev, 2005. Dispersive estimates of solutions to the wave equation with a potential in dimensions two and three. Serdica Math. J., 31: 263-278.
    Direct Link  |  

  100. Cuevas, C. and G. Vodev, 2004. Sharp bound on the numbers of resonances for conformally compact manifolds with constants negative curvature near infinity. Matematica Contemporanea Braz. Math. Soc. Brazil, 26: 23-29.

  101. Cuevas, C. and M. Pinto, 2003. Convergent solutions of linear functional difference equations in phase space. J. Math. Anal. Applic., 277: 324-341.
    CrossRef  |  Direct Link  |  

  102. Cuevas, C. and G. Vodev, 2003. Sharp bounds on the number of resonances for conformally compact manifolds with constant negative curvature near infinity. Commun. Partial Differential Equations, 28: 1685-1704.
    CrossRef  |  Direct Link  |  

  103. Cuevas, C. and C. Vidal, 2002. Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space. J. Difference Equations Applic., 8: 603-640.
    CrossRef  |  Direct Link  |  

  104. Cuevas, C. and M. Pinto, 2001. Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non dense domain. Nonlinear Anal.: Theory Methods Applic., 45: 73-83.
    CrossRef  |  Direct Link  |  

  105. Cuevas, C. and M. Pinto, 2001. Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay. Comput. Math. Applic., 42: 671-685.
    CrossRef  |  Direct Link  |  

  106. Cuevas, C., 2000. Weighted convergent and bounded solutions of Volterra difference systems with infinite delay. J. Differ. Equat. Appl., 6: 461-480.
    CrossRef  |  

  107. Cuevas, C., 2000. On the hyperbolic dirichlet to neumann functional in abelian lie groups. Proyec Ciones Chile, 19: 19-25.
    CrossRef  |  

  108. Cuevas, C. and M. Pinto, 2000. Asymptotic behavior in Volterra difference systems with unbounded delay. J. Comput. Appl. Math., 113: 217-225.
    CrossRef  |  Direct Link  |  

  109. Cardoso, F. and R. Mendoza, 1999. On the hyperbolic dirichlet to neumann functional. Math. Soc. Portugal, 56: 389-408.

  110. Cuevas, C., 1998. On the parabolic Dirichlet to neumann functional. Proyecciones. Revista Matemática, 17: 167-176.

  111. Cardoso, F., 1998. On the hyperbolic dirichlet to neumann functional in H N and Sn Proyecciones, Chile, 17: 63-70.