Dr. Surapati Pramanik

Assistant Professor
Nandalal Ghosh B.T. College, India


Highest Degree
Ph.D. in Education from University of Kalyani, West Bengal, India

Share this Profile

Area of Interest:

Mathematics
Operations Research
Hybrid Neutrosophic
Fuzzy Optimization
Computation

Selected Publications

  1. Mandal, T., I. Maiti and S. Pramanik, 2023. A goal programming strategy for bi-level decentralised multi-objective linear programming problem with neutrosophic numbers. Int. J. Appl. Manage. Sci., 10.1504/IJAMS.2023.10053275.
    CrossRef  |  Direct Link  |  

  2. Seyedpour, S., G.A. Bonsu, C.R. Rojas-garcia, H. Kopnina and M. Jaskulak, 2022. Integrated Science 2050: Transdisciplinarity. In: Transdisciplinarity, Rezaei, N. (Ed.) Springer, Cham, Switzerland, ISBN: 978-3-030-94651-7, pp: 713-736.
    CrossRef  |  Direct Link  |  

  3. Pramanik, S., S. Das, R. Das and B.C. Tripathy, 2022. MADM Strategies Based on Arithmetic and Geometric Mean Operator Under Rough-Bipolar Neutrosophic Set Environment. In: Transactions on Rough Sets XXIII. Peters, J.F., A. Skowron, R.N. Bhaumik and S. Ramanna, (Eds.), Springer Berlin Heidelberg, pp: 60-76.
    CrossRef  |  Direct Link  |  

  4. Pramanik, S., 2022. Single-Valued Neutrosophic Set: An Overview. In: Transdisciplinarity, Rezaei, N. (Ed.), Springer International Publishing, Cham, Switzerland, ISBN: 978-3-030-94651-7, pp: 563-608.
    CrossRef  |  Direct Link  |  

  5. Pramanik, S., 2022. Interval quadripartitioned neutrosophic sets. Neutrosophic Sets Syst., 51: 146-156.
    CrossRef  |  Direct Link  |  

  6. Das, S., R. Das, S. Pramanik and B.C. Tripathy, 2022. Neutrosophic infi-semi-open set via neutrosophic infi-topological spaces. Int. J. Neutrosophic Sci., 18: 199-209.
    CrossRef  |  Direct Link  |  

  7. Das, S., R. Das and S. Pramanik, 2022. Single valued pentapartitioned neutrosophic graphs. Neutrosophic Sets Syst., 50: 225-238.
    Direct Link  |  

  8. Das, S., R. Das and S. Pramanik, 2022. Single valued bipolar pentapartitioned neutrosophic set and its application in MADM strategy. Neutrosophic Sets Syst., 49: 145-163.
    Direct Link  |  

  9. Das, S., R. Das and S. Pramanik, 2022. Neutrosophic separation axioms. Neutrosophic Sets Syst., 49: 103-110.
    Direct Link  |  

  10. Das, S., R. Das and S. Pramanik, 2022. Neutro Algebra and Neutro Group. In: Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebras, Smarandache, F. and M. Al-Tahan (Eds.), IGI Global, United States, ISBN13: 9781668434956, pp: 141-154.
    CrossRef  |  Direct Link  |  

  11. Das, S., B. Shil and S. Pramanik, 2022. HSSM- MADM strategy under SVPNS environment. Neutrosophic Sets Syst., 50: 379-392.
    Direct Link  |  

  12. Mondal, K., S. Pramanik and B.C. Giri, 2021. NN-TOPSIS strategy for MADM in neutrosophic number setting. Neutrosophic Sets Syst., 47: 65-92.
    Direct Link  |  

  13. Momtazmanesh, S., A. Saghazadeh, J.C.A. Becerra, K. Aramesh and F.J. Barba et al. 2021. International Scientific Collaboration Is Needed to Bridge Science to Society: USERN2020 Consensus Statement. SN Compr. Clin. Med. 3: 1699-1703.
    CrossRef  |  Direct Link  |  

  14. Mallick, R. and S. Pramanik, 2021. TrNN- EDAS Strategy for MADM with Entropy Weight Under Trapezoidal Neutrosophic Number Environment. In: Neutrosophic Operational Research :Methods and Applications. Smarandache, F. and M. Abdel-Basset, Springer International Publishing, Cham, 18.
    CrossRef  |  Direct Link  |  

  15. Das, S., B. Shil and S. Pramanik, 2021. SVPNS-MADM strategy based on GRA in SVPNS environment. Neutrosophic Sets Syst., 47: 50-65.
    Direct Link  |  

  16. Das, S. and S. Pramanik, 2021. Neutrosophic tri-topological space. Neutrosophic Sets Syst., 45: 366-377.
    Direct Link  |  

  17. Pramanik, S., T. Mandal, I. Maiti and S. Das 2020. Solving Multi-objective Linear Fractional Programming Problem Based on StanojevicÂ’s Normalization Technique Under Fuzzy Environment. IJOR 10.1504/IJOR.2020.10028794.
    CrossRef  |  Direct Link  |  

  18. Pramanik, S. and R. Mallick, 2020. Multimoora strategy for solving multiu2010attribute group decision making (magdm) in trapezoidal neutrosophic number environment. CAAI Trans. Intell. Technol., 5: 150-156.
    CrossRef  |  Direct Link  |  

  19. Pramanik, S. and R. Mallick, 2020. Extended GRA-Based MADM Strategy With Single-Valued Trapezoidal Neutrosophic Numbers. In: Neutrosophic Sets in Decision Analysis and Operations Research, Abdel-Basset, M. and F. Smarandache, IGI Global, United States, ISBN-13: 9781799825555, pp: 150-179.
    CrossRef  |  Direct Link  |  

  20. Mallick, R. and S. Pramanik 2020. Pentapartitioned Neutrosophic Set and its Propertie. NSS .
    Direct Link  |  

  21. Maiti, I., T. Mandal and S. Pramanik 2020. FGP Approach Based on Stanojevics Normalization Technique for Multi-level Multi-objective Linear Fractional Programming Problem with Fuzzy Parameters. FGP Approach Based on Stanojevics Normalization Technique for Multi-level Multi-objective Linear Fractional Programming Problem with Fuzzy Parameters. 2020 Springer International Publishing 392-402.
    CrossRef  |  Direct Link  |  

  22. K. Mondal, S. Pramanik and B.C. Giri, 2020. Some similarity measures for MADM under a complex neutrosophic set environment. In: Some similarity measures for MADM under a complex neutrosophic set environment Smarandache F. and M. Abdel-Basset, Elsevier Cambridge, Massachusetts, United States, ISBN-13: 978-0-12-819670-0, Pages: 87-116.
    CrossRef  |  Direct Link  |  

  23. Das, S. and S. Pramanik 2020. Neutrosophic Φ-Open Sets and Neutrosophic Φ-Continuous Functions. NSS 10.5281/ZENODO.4306899.
    CrossRef  |  Direct Link  |  

  24. Das, S. and S. Pramanik 2020. Neutrosophic Simply Soft Open Set in Neutrosophic Soft Topological Space. NSS 10.5281/zenodo.4300505.
    CrossRef  |  Direct Link  |  

  25. Das, S. and S. Pramanik 2020. Generalized Neutrosophic B-Open Sets in Neutrosophic Topological Space. NSS 10.5281/zenodo.3951716.
    CrossRef  |  Direct Link  |  

  26. Mondal, K., S. Pramanik and B.C. Giri, 2019. Rough Neutrosophic Aggregation Operators for Multi-criteria Decision-Making. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, : Kahraman, C. and I. Otay (Eds.). Springer, Cham, ISBN: 978-3-030-00044-8, pp: 79-105.

  27. Maiti, I., T. Mandal and S. Pramanik 2019. Neutrosophic Goal Programming Strategy for Multi-level Multi-objective Linear Programming Problem. J. Ambient Intell. Human Comput. 11: 3175-3186.
    CrossRef  |  Direct Link  |  

  28. Biswas, P., S. Pramanik and B.C. Giri, 2019. Neutrosophic TOPSIS with Group Decision Making. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, Kahraman, C. and Ä°. Otay (Eds.). Springer, Cham, ISBN: 978-3-030-00044-8, pp: 543-585.

  29. Biswas, P., S. Pramanik and B.C. Giri, 2019. NH-MADM strategy in neutrosophic hesitant fuzzy set environment based on extended GRA. Informatica, 30: 213-242.
    CrossRef  |  Direct Link  |  

  30. 1. Biswas, P., S. Pramanik and B.C. Giri. 2019. Non-linear programming approach for single-valued neutrosophic topsis method. New Math. Nat. Comput., 10.1142/S1793005719500169.
    CrossRef  |  Direct Link  |  

  31. Pramanik, S., S. Dalapati, S. Alam, S. Smarandache and T.K. Roy, 2018. NC-cross entropy based MADM strategy in neutrosophic cubic set environment. Mathematics, 10.3390/math6050067.
    CrossRef  |  Direct Link  |  

  32. Pramanik, S., S. Dalapati, S. Alam, F. Smarandache and T.K. Roy, 2018. NS-cross entropy-based MAGDM under single-valued neutrosophic set environment. Information, Vol 9 10.3390/info9020037.
    CrossRef  |  Direct Link  |  

  33. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. VIKOR based MAGDM strategy under bipolar neutrosophic set environment. Neutros. Sets Syst., 19: 57-69.
    CrossRef  |  Direct Link  |  

  34. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. TODIM method for group decision making under bipolar neutrosophic set environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol.2 Pons Editions, Brussels, pp: 140-155.

  35. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2018. NC-VIKOR based MAGDM strategy under neutrosophic cubic set environment. Neutr. Sets Syst., 20: 95-108.
    Direct Link  |  

  36. Pramanik, S., R. Roy, T.K. Roy and F. Smarandache, 2018. Multi-attribute decision making based on several trigonometric hamming similarity measures under interval rough neutrosophic environment. Neutros. Sets Syst., 19: 110-118.
    CrossRef  |  Direct Link  |  

  37. Pramanik, S., R. Roy and T.K. Roy, 2018. Multi criteria decision making based on projection and bidirectional projection measures of rough neutrosophic sets. Neutros. Sets Syst., 19: 101-109.
    Direct Link  |  

  38. Pramanik, S., R. Roy and T.K. Roy, 2018. Multi Criteria Decision Making Based on Projection and Bidirectional Projection Measures of Rough Neutrosophic Sets. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). vol 2 Pons Editions, Brussels, pp: 175-187.

  39. Pramanik, S., R. Mallick and A. Dasgupta, 2018. Contributions of Selected indian researchers to multi attribute decision making in neutrosophic environment: An overview. Neut. Sets Syst., 20: 109-131.
    Direct Link  |  

  40. Pramanik, S., P.P. Dey and F. Smarandache, 2018. Correlation coefficient measures of interval bipolar neutrosophic sets for solving multi-attribute decision making problems. Neutr.. Sets Syst., 19: 70-79.
    Direct Link  |  

  41. Pramanik, S., P.P. Dey and B.C. Giri, 2018. Hybrid Vector Similarity Measure of Single Valued Refined Neutrosophic Sets To Multi-Attribute Decision Making Problems. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). vol 2 Pons Editions, Brussels, pp: 156-174.

  42. Pramanik, S., I. Maiti and T. Mandal, 2018. A Taylor series based fuzzy mathematical approach for multi objective linear fractional programming problem with fuzzy parameters. Int. J. Comput. Applic., 180: 22-29.
    Direct Link  |  

  43. Pramanik, S. and S. Dalapati, 2018. A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment. Neutr. Sets Syst., 21: 131-141.
    Direct Link  |  

  44. Pramanik, S. and P.P. Dey, 2018. Bi-level linear programming problem with neutrosophic numbers. Neut. Sets Syst., 21: 110-121.
    CrossRef  |  Direct Link  |  

  45. Pramanik, S. and D. Banerjee, 2018. Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment. MOJ Curr. Res. Rev., 1: 135-141.
    CrossRef  |  Direct Link  |  

  46. Mondal, K., S. Pramanik, B.C. Giri and F. Smarandache, 2018. NN-Harmonic mean aggregation operators-based MCGDM strategy in a neutrosophic number environment. Axioms, Vol 7 10.3390/axioms7010012.
    CrossRef  |  Direct Link  |  

  47. Mondal, K., S. Pramanik and B.C. Giri, 2018. Single valued neutrosophic hyperbolic sine similarity measure based MADM strategy. Neutr. Sets Syst., 20: 3-11.
    Direct Link  |  

  48. Mondal, K., S. Pramanik and B.C. Giri, 2018. Multi-Criteria Group Decision Making Based on Linguistic Refined Neutrosophic Strategy. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol.2, Pons Editions, Brussels, pp: 125-139.

  49. Mondal, K., S. Pramanik and B.C. Giri, 2018. Hybrid binary logarithm similarity measure for MAGDM problems under SVNS assessments. Neutr. Sets Syst., 20: 12-25.
    Direct Link  |  

  50. Broumi, S., A. Bakali, M. Talea, F. Smarandache, and V. Uluçay et al., 2018. Neutrosophic sets: An overview. In: New trends in neutrosophic theory and applications, Smarandache, F.. and S. Pramanik (Eds.,), vol.2 Pons Editions, Brussels, pp: 403-434.

  51. Biswas, P., S. Pramanik and B.C. Giri, 2018. TOPSIS strategy for multi-attribute decision making with trapezoidal neutrosophic numbers. Neutros. Sets Syst., 19: 29-39.
    Direct Link  |  

  52. Biswas, P., S. Pramanik and B.C. Giri, 2018. Multi-Attribute Group Decision Making Based on Expected Value of Neutrosophic Trapezoidal Numbers. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.) vol 2, Pons Editions, Brussels, pp: 103-124.

  53. Biswas, P., S. Pramanik and B.C. Giri, 2018. Distance measure based MADM strategy with interval trapezoidal neutrosophic numbers. Neutros. Sets Syst., 19: 40-46.
    Direct Link  |  

  54. Banerjee, D. and S. Pramanik, 2018. Single-objective linear goal programming problem with neutrosophic numbers. Int. J. Eng. Sci. Res. Technol., 7: 454-469.
    Direct Link  |  

  55. . Mondal, K., S. Pramanik and B.C. Giri, 2018. Interval neutrosophic tangent similarity measure based MADM strategy and its application to MADM problems. Neutros. Sets Syst., 19: 47-56.
    Direct Link  |  

  56. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. Some operations and properties of neutrosophic cubic soft set. Global J. Res. Rev., Vol. 4. .
    Direct Link  |  

  57. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. Neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets Syst., 16: 44-56.

  58. Pramanik, S., S. Dalapati, S. Alam and T.K. Roy, 2017. NC-TODIM-based MAGDM under a neutrosophic cubic set environment. Information, Vol 8 10.3390/info8040149.
    CrossRef  |  Direct Link  |  

  59. Pramanik, S., R. Roy, T.K. Roy and F. Smarandache, 2017. Multi criteria decision making using correlation coefficient under rough neutrosophic environment. Neutros. Sets Syst., 17: 29-36.
    Direct Link  |  

  60. Pramanik, S., P.P. Dey, B.C. Giri and F. Smarandache, 2017. Bipolar neutrosophic projection based models for solving multi-attribute decision making problems. Neutrosophic Sets Syst., 15: 70-79.

  61. Pramanik, S., P. Biswas and B.C. Giri, 2017. Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment. Neural Comput. Applic., 28: 1163-1176.
    CrossRef  |  Direct Link  |  

  62. Dalapati, S., S. Pramanik, S. Alam, S. Smarandache and T.K. Roy, 2017. IN-cross entropy based magdm strategy under interval neutrosophic set environment. Neutros. Sets Syst., 18: 43-57.
    CrossRef  |  Direct Link  |  

  63. Banerjee, D., B.C. Giri, S. Pramanik and F. Smarandache, 2017. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst., 15: 60-69.

  64. Pramanik, S., S. Dalapati and T.K. Roy, 2016. Neutrosophic Multi-Attribute Group Decision Making Strategy for Logistics Center Location Selection. In: Neutrosophic Operational Research, Smarandache, F., M.A. Basset and V. Chang (Eds). Volume III, Pons asbl, Brussels, pp: 13-32.

  65. Pramanik, S., S. Dalapati and T.K. Roy, 2016. Logistics Center Location Selection Approach Based on Neutrosophic Multi-Criteria Decision Making. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 161-174.

  66. Pramanik, S., R.S. Roy and T.K. Roy, 2016. Teacher Selection Strategy Based on Bidirectional Projection Measure in Neutrosophic Number Environment. In: Neutrosophic Operational Research, Smarandache, F., M.A. Basset and V. Chang (Eds.). Volume II, Pons asbl, Brussels, pp: 29-53.

  67. Pramanik, S., D. Banerjee and B.C. Giri, 2016. Topsis Approach for Multi Attribute Group Decision Making in Refined Neutrosophic Environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 79-91.

  68. Pramanik, S., D. Banerjee and B.C. Giri, 2016. TOPSIS approach to chance constrained multi-objective multilevel quadratic programming problem. Global J. Eng. Sci. Res. Manage., 3: 19-36.

  69. Pramanik, S., D. Banerjee and B.C. Giri, 2016. Multi-criteria group decision making model in neutrosophic refined set and its application. Global J. Eng. Sci. Res. Manage., 3: 12-18.

  70. Pramanik, S., 2016. Neutrosophic linear goal programming. Global J. Eng. Sci. Res. Manage., 3: 1-11.

  71. Pramanik, S. and K. Mondal, 2016. Rough bipolar neutrosophic set. Global J. Eng. Sci. Res. Manage., 3: 71-81.

  72. Mondal, K., S. Pramanik and F. Smarandache, 2016. Several Trigonometric Hamming Similarity Measures of Rough Neutrosophic Sets and Their Applications in Decision Making. In: New Trends in Neutrosophic Theory and Application, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Belgium, pp: 93-103.

  73. Mondal, K., S. Pramanik and F. Smarandache, 2016. Rough neutrosophic TOPSIS for multi-attribute group decision making. Neutrosophic Sets Syst., 13: 105-117.

  74. Mondal, K., S. Pramanik and F. Smarandache, 2016. Role of Neutrosophic Logic in Data Mining. In: New Trends in Neutrosophic Theory and Application, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 15-23.

  75. Mondal, K., S. Pramanik and F. Smarandache, 2016. Multi-attribute decision making based on rough neutrosophic variational coefficient similarity measure. Neutrosophic Sets Syst., 13: 3-17.

  76. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Topsis For Solving Multi-Attribute Decision Making Problems Under Bi-Polar Neutrosophic Environment. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 65-77.

  77. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Neutrosophic soft multi-attribute group decision making based on grey relational analysis method. J. New Results Sci., 5: 25-37.
    Direct Link  |  

  78. Dey, P.P., S. Pramanik and B.C. Giri, 2016. Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neutrosophic Sets Syst., 11: 98-106.

  79. Biswas, P., S. Pramanik and B.C. Giri, 2016. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Applic., 27: 727-737.
    CrossRef  |  Direct Link  |  

  80. Biswas, P., S. Pramanik and B.C. Giri, 2016. Some Distance Measures of Single Valued Neutrosophic Hesitant Fuzzy Sets and Their Applications to Multiple Attribute Decision Making. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 55-63.

  81. Biswas, P., S. Pramanik and B.C. Giri, 2016. Gra Method of Multiple Attribute Decision Making With Single Valued Neutrosophic Hesitant Fuzzy Set Information. In: New Trends in Neutrosophic Theory and Applications, Smarandache, F. and S. Pramanik (Eds.). Pons Editions, Brussels, pp: 55-63.

  82. Biswas, P., S. Pramanik and B.C. Giri, 2016. Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets Syst., 12: 20-40.

  83. Banerjee, D., K. Mondal and S. Pramanik, 2016. Fuzzy goal programming approach for soil allocation problem in brick-fields-a case study. Global J. Eng. Sci. Res. Manage., 3: 1-16.
    Direct Link  |  

  84. Pramanik, S., P.P. Dey and B.C. Giri, 2015. TOPSIS for single valued neutrosophic soft expert set based multi-attribute decision making problems. Neutrosophic Sets Syst., 10: 88-95.
    Direct Link  |  

  85. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Multi-objective chance constrained transportation problem with fuzzy parameters. Global J. Adv. Res., 2: 49-63.

  86. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Multi-level multi-objective linear plus linear fractional programming problem based on FGP approach. Int. J. Innov. Sci. Eng. Technol., 2: 153-160.

  87. Pramanik, S., D. Banerjee and B.C. Giri, 2015. Chance constrained multi-level linear programming problem. Int. J. Comput. Applic., 120: 1-6.

  88. Pramanik, S., 2015. Multilevel programming problems with fuzzy parameters: A fuzzy goal programming approach. Int. J. Comput. Applic., 122: 34-41.

  89. Pramanik, S. and K. Mondal, 2015. Weighted fuzzy similarity measure based on tangent function and its application to medical diagnosis. Int. J. Innov. Res. Sci. Eng. Technol., 4: 158-164.

  90. Pramanik, S. and K. Mondal, 2015. Some rough neutrosophic similarity measure and their application to multi attribute decision making. Global J. Eng. Sci. Res. Manage., 2: 61-74.

  91. Pramanik, S. and K. Mondal, 2015. Interval neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets Syst., 9: 13-22.

  92. Pramanik, S. and K. Mondal, 2015. Cotangent similarity measure of rough neutrosophic sets and its application to medical diagnosis. J. New Theory, 4: 90-102.

  93. Pramanik, S. and K. Mondal, 2015. Cosine similarity measure of rough neutrosophic sets and its application in medical diagnosis. Global J. Adv. Res., 2: 212-220.
    Direct Link  |  

  94. Mondal, K. and S. Pramanik, 2015. Rough neutrosophic multi-attribute decision-making based on rough accuracy score function. Neutrosophic Sets Syst., 8: 16-22.

  95. Mondal, K. and S. Pramanik, 2015. Rough neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets Syst., 7: 8-17.

  96. Mondal, K. and S. Pramanik, 2015. Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets Syst., 9: 85-92.

  97. Mondal, K. and S. Pramanik, 2015. Neutrosophic refined similarity measure based on tangent function and its application to multi attribute decision making. J. New Theory, 8: 41-50.

  98. Mondal, K. and S. Pramanik, 2015. Neutrosophic refined similarity measure based on cotangent function and its application to multi-attribute decision making. Global J. Adv. Res., 2: 486-494.
    Direct Link  |  

  99. Mondal, K. and S. Pramanik, 2015. Neutrosophic decision making model of school choice. Neutrosophic Sets Syst., 7: 62-68.

  100. Mondal, K. and S. Pramanik, 2015. Neutrosophic decision making model for clay-brick selection in construction field based on grey relational analysis. Neutrosophic Sets Syst., 9: 64-71.

  101. Mondal, K. and S. Pramanik, 2015. Intuitionistic fuzzy similarity measure based on tangent function and its application to multi-attribute decision making. Global J. Adv. Res., 2: 464-471.

  102. Mondal, K. and S. Pramanik, 2015. Decision making based on some similarity measures under interval rough neutrosophic environment. Neutrosophic Sets Syst., 10: 46-57.

  103. Mondal, K. and S. Pramanik, 2015. Application of grey system theory in predicting the number of deaths of women by committing suicide-a case study. J. Applied Quantitative Methods, 10: 48-55.

  104. Dey, P.P., S. Pramanik and B.C. Giri, 2015. Multi-criteria group decision making in intuitionistic fuzzy environment based on grey relational analysis for weaver selection in Khadi institution. J. Applied Quantitative Methods, 10: 1-14.

  105. Dey, P.P., S. Pramanik and B.C. Giri, 2015. Generalized neutrosophic soft multi-attribute group decision making based on TOPSIS. Crit. Rev., 11: 41-55.

  106. Dey, P.P., S. Pramanik and B.C. Giri, 2015. An extended grey relational analysis based interval neutrosophic multi-attribute decision making for weaver selection. J. New Theory, 9: 82-93.

  107. Biswas, P., S. Pramanik and B.C. Giri, 2015. Cosine similarity measure based multi-attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst., 8: 47-57.

  108. Pramanik, S. and T.K. Roy, 2014. Neutrosophic game theoretic approach to indo-pak conflict over Jammu-Kashmir. Neutrosophic Sets Syst., 2: 82-101.

  109. Mondal, K. and S. Pramanik, 2014. Multi-criteria group decision making approach for teacher recruitment in higher education under simplified neutrosophic environment. Neutrosophic Sets Syst., 6: 28-34.

  110. Mondal, K. and S. Pramanik, 2014. A study on problems of hijras in west bengal based on neutrosophic cognitive maps. Neutrosophic Sets Syst., 5: 21-26.
    Direct Link  |  

  111. Mondal, K. And S. Pramanik, 2014. Intuitionistic fuzzy multicriteria group decision making approach to quality-brick selection problem. J. Applied Quantitative Methods, 9: 35-50.

  112. Dey, P.P., S. Pramanik and B.C. Giri, 2014. TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming. J. Ind. Eng. Int., 10: 173-184.
    Direct Link  |  

  113. Dey, P.P., S. Pramanik and B.C. Giri, 2014. Multilevel fractional programming problem based on fuzzy goal programming. Int. J. Innov. Res. Technol. Sci., 2: 17-26.

  114. Biswas, P., S. Pramanik and B.C. Giri, 2014. Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neutrosophic Sets Syst., 2: 105-113.
    Direct Link  |  

  115. Biswas, P., S. Pramanik and B.C. Giri, 2014. A study on information technology professionals’ health problem based on intuitionistic fuzzy cosine similarity measure. Swiss J. Statist. Applied Math., 2: 44-50.

  116. Biswas, P., S. Pramanik and B.C. Giri, 2014. A new methodology for neutrosophic multi-attribute decision-making with unknown weight information. Neutrosophic Sets Syst., 3: 44-54.

  117. Pramanik, S., 2013. A critical review of Vivekanada’s educational thoughts for women education based on neutrosophic logic. MS Acad., 3: 191-198.

  118. Pramanik, S. and T.K. Roy, 2013. Game theoretic model to the Jammu-Kashmir conflict between India and Pakistan. Int. J. Math. Arch., 4: 162-170.

  119. Pramanik, S. and S.N. Chackrabarti, 2013. A study on problems of construction workers in West Bengal based on neutrosophic cognitive maps. Intl. J. Innovative Res. Sci. Eng. Technol., 2: 6387-6394.
    Direct Link  |  

  120. Dey, P.P., S. Pramanik and B.C. Giri, 2013. Fuzzy goal programming algorithm for solving bi-level multi-objective linear fractional programming problems. Int. J. Math. Arch., 4: 154-161.

  121. Pramanik, S., P.P. Dey and T.K. Roy, 2012. Fuzzy goal programming approach to linear fractional bilevel decentralized programming problem based on Taylor series approximation. J. Fuzzy Math., 20: 231-238.
    Direct Link  |  

  122. Pramanik, S., D. Banerjee and B.C. Giri, 2012. Chance constrained linear plus linear fractional bi-level programming problem. Int. J. Comput. Applic., 56: 34-39.

  123. Pramanik, S., 2012. Bilevel programming problem with fuzzy parameter: A fuzzy goal programming approach. J. Applied Quantitative Methods, 7: 9-24.

  124. Pramanik, S. and P. Biswas, 2012. Multi-objective assignment problem with generalized trapezoidal fuzzy numbers. Int. J. Applied Inf. Syst., 2: 13-20.

  125. Pramanik, S. and D. Banerjee, 2012. Multi-objective chance constrained capacitated transportation problem based on fuzzy goal programming. Int. J. Comput. Applic., 44: 42-46.

  126. Pramanik, S. and D. Banerjee, 2012. Chance constrained quadratic bi-level programming problem. Int. J. Mod. Eng. Res., 2: 2417-2424.
    Direct Link  |  

  127. Banerjee, D. and S. Pramanik, 2012. Goal programming approach to chance constrained multi-objective linear fractional programming problem based on Taylor’s series approximation. Int. J. Comput. Technol., 2: 77-80.

  128. Banerjee, D. and S. Pramanik, 2012. Chance constrained multi-objective linear plus linear fractional programming problem based on Taylor’s series approximation. Int. J. Eng. Res. Dev., 1: 55-62.

  129. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Multi-objective linear plus linear fractional programming problem based on Taylor series approximation. Int. J. Comput. Applic., 32: 61-68.

  130. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Fuzzy goal programming approach to quadratic bi-level multi-objective programming problem. Int. J. Comput. Applic., 29: 9-14.

  131. Pramanik, S., P.P. Dey and B.C. Giri, 2011. Decentralized bi-level multi-objective programming problem with fuzzy parameters based on fuzzy goal programming. Bull. Calcutta Math. Soc., 103: 381-390.

  132. Pramanik, S. and P.P. Dey, 2011. Quadratic bi-level programming problem based on fuzzy goal programming approach. Int. J. Software Eng. Applic., 2: 41-59.

  133. Pramanik, S. and P.P. Dey, 2011. Multi-objective quadratic programming problem: A priority based fuzzy goal programming. Int. J. Comput. Applic., 26: 30-35.

  134. Pramanik, S. and P.P. Dey, 2011. Multi-objective quadratic programming problem based on fuzzy goal programming. Int. J. Pure Applied Sci. Technol., 6: 45-53.

  135. Pramanik, S. and P.P. Dey, 2011. Multi-objective linear fractional programming problem based on fuzzy goal programming. Int. J. Math. Arch., 2: 1875-1881.

  136. Pramanik, S. and P.P. Dey, 2011. Bi-level multi-objective programming problem with fuzzy parameters. Int. J. Comput. Applic., 30: 13-20.

  137. Pramanik, S. and P.P. Dey, 2011. Bi-level linear fractional programming problem based on fuzzy goal programming approach. Int. J. Comput. Applic., 25: 34-40.

  138. Pramanik, S. and P.P. Dey, 2011. A priority based fuzzy goal programming to multi-objective linear fractional programming problem. Int. J. Comput. Applic., 30: 1-6.

  139. Pramanik, S. and P. Biswas, 2011. Priority based fuzzy goal programming method for solving multi-objective assignment problem with fuzzy parameters. Int. J. Math. Comput. Methods Sci. Technol., 1: 14-26.

  140. Pramanik, S. and D. Mukhopadhyaya, 2011. Grey relational analysis based intuitionistic fuzzy multi criteria group decision-making approach for teacher selection in higher education. Int. J. Comput. Applic., 34: 21-29.

  141. Dey, P.P. and S. Pramanik, 2011. Goal programming approach to linear fractional bilevel programming problem based on Taylor series approximation. Int. J. Pure Applied Sci. Technol., 6: 115-123.

  142. Biswas, P. and S. Pramanik, 2011. Replacement problem with grey parameters. Int. J. Comput. Applic., 32: 11-16.

  143. Biswas, P. and S. Pramanik, 2011. Multi-objective assignment problem with fuzzy costs for the case military affairs. Int. J. Comput. Applic., 30: 7-12.

  144. Biswas, P. and S. Pramanik, 2011. Fuzzy ranking method to assignment problem with fuzzy costs. Int. J. Math. Arch., 2: 2549-2560.

  145. Biswas, P. and S. Pramanik, 2011. Fuzzy approach to replacement problem with value of money changes with time. Int. J. Comput. Applic., 30: 28-33.

  146. Biswas, P. and S. Pramanik, 2011. Application of fuzzy ranking method to determine the replacement time for fuzzy replacement problem. Int. J. Comput. Applic., 25: 41-47.

  147. Pramanik, S. and T.K. Roy, 2008. Multiobjective transportation model with fuzzy parameters: A priority based fuzzy goal programming. J. Trans. Syst. Eng. Inf. Technol., 8: 40-48.

  148. Pramanik, S. and T.K. Roy, 2007. Intuitionist fuzzy goal programming and its application in solving multi-objective transportation problem. Tamsui Oxford J. Manage. Sci., 23: 1-17.

  149. Pramanik, S. and T.K. Roy, 2007. Fuzzy goal programming approach to multilevel programming problems. Eur. J. Operat. Res., 176: 1151-1166.
    CrossRef  |  Direct Link  |  

  150. Pramanik, S. and T.K. Roy, 2007. An intuitionistic fuzzy goal programming approach for a quality control problem: A case study. Tamsui Oxford J. Manage. Sci., 23: 1-18.

  151. Pramanik, S. and T.K. Roy, 2006. A fuzzy goal programming technique for solving multi-objective transportation problem. Tamsui Oxford J. Manage. Sci., 22: 67-89.

  152. Pramanik, S. and T.K. Roy, 2005. A goal programming procedure for solving unbalanced transportation problem having multiple fuzzy goals. Tamsui Oxford J. Manage. Sci., 21: 37-52.

  153. Pramanik, S. and T.K. Roy, 2005. A fuzzy goal programming approach for multi-objective capacitated transportation problem. Tamsui Oxford J. Manage. Sci., 21: 75-88.

  154. Pramanik, S. And T.K. Roy, 2005. An intuitionistic fuzzy goal programming approach to vector optimization problem. Intuitionistic Fuzzy Sets, 11: 1-14.