Dr. Pijush Samui
Associate ProfessorNational Institute of Technology, India
Highest Degree
Ph.D. in Geotechnical and Structural Engineering from Indian Institute of Science, India
Share this Profile
Area of Interest:
Selected Publications
- Samui, P., D. Kim and C. Ghosh, 2018. Integrating Disaster Science and Management Global Case Studies in Mitigation and Recovery. Elsevier, Netherlands.
- Roy, S.S., P. Samui, R. Deo and S. Ntalampiras, 2018. Big Data in Engineering Applications. Springer, Netherlands.
- Kim, D., S.S. Roy, T. Lansivaara, R. Deo and P. Samui, 2018. Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering. IGI Global, USA.
- Dutta, S., P. Samui and D. Kim, 2018. Comparison of machine learning techniques to predict compressive strength of concrete. Comput. Concrete, 21: 463-470.
- Samui, P., S.S. Roy and V.E. Balas, 2017. Handbook of Neural Computation. Elsevier, Netherlands.
- Samui, P. and D. Kim, 2017. Minimax probability machine regression and extreme learning machine applied to compression index of marine clay. Indian J. Geo-Marine Sci., 46: 2350-2356.
- Roy, S.S., P. Kulshrestha and P. Samui, 2017. Classifying Images of Drought-Affected Area Using Deep Belief Network, kNN and Random Forest Learning Techniques. In: Deep Learning Innovations and Their Convergence With Big Data, Karthik, S., A. Paul and N. Karthikeyan (Eds.)., IGI Global, USA., pp: 102-119.
- Roshni, T., M.K. Sajid and P. Samui, 2017. Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India. Ocean Syst. Eng. Int. J., 7: 319-328.
- Kumar, R., P. Samui and S. Kumari, 2017. Reliability analysis of infinite slope using metamodels. Geotechnical Geol. Eng., 35: 1221-1230.
CrossRef | Direct Link | - Jayabalan, J., S.S. Roy, P. Samui and P. Kurup, 2017. Intelligent Models Applied to Elastic Modulus of Jointed Rock Mass. In: Handbook of Research on Trends and Digital Advances in Engineering Geology, Ceryan, N. (Rd.)., IGI Global, USA., pp: 1-30.
- Dutta, S., R. Murthy, D. Kim and P. Samui, 2017. Prediction of compressive strength of self-compacting concrete using intelligent computational modeling. Comput. Mater. Continua, 53: 167-185.
- Deo, R.C. and P. Samui, 2017. Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process and minimax probability machine regression: Case study of Brisbane City. J. Hydrologic Eng., Vol. 22. 10.1061/(ASCE)HE.1943-5584.0001506.
CrossRef | - Viswanathan, R. and P. Samui, 2016. Determination of rock depth using artificial intelligence techniques. Geosci. Frontiers, 7: 61-66.
CrossRef | Direct Link | - Subburaman, D., J. Jagan, Y. Dalkilic and P. Samui, 2016. Reliability Analysis of Slope Using MPMR, GRNN and GPR. In: Handbook of Research on Computational Simulation and Modeling in Engineering, Miranda, F. and C. Abreu (Eds.). IGI Global, USA., pp: 208-224.
- Samui, P., S.S. Roy, P. Kurup and Y. Dalkilic, 2016. Modeling of Seismic Liquefaction Data Using Extreme Learning Machine. In: Earthquakes: Monitoring Technology, Disaster Management and Impact Assessment, Coleman, W. (Ed.)., Nova Science Publishers, UK., pp: 61-70.
- Samui, P., S. Chakraborty and D. Kim, 2016. Modeling and Simulation Techniques in Structural Engineering. IGI Global, USA.
- Samui, P., P. Kurup, S. Dhivya and J. Jagan, 2016. Reliability analysis of quick sand condition. Geotechnical Geol. Eng., 34: 579-584.
CrossRef | Direct Link | - Samui, P., J. Jagan and R. Hariharan, 2016. An alternative method for determination of liquefaction susceptibility of soil. Geotechnical Geol. Eng., 34: 735-738.
CrossRef | Direct Link | - Samui, P. and D. Kim, 2016. Determination of electrical resistivity of soil based on thermal resistivity using RVM and MPMR. Periodica Polytechnica Civil Eng., 60: 511-515.
CrossRef | Direct Link | - Roy, S., J. Jagan and P. Samui, 2016. Determination of Work Zone Capacity Using ELM, MPMR and GPR. In: Using Decision Support Systems for Transportation Planning Efficiency, Ocalir-Akunal, E.V. (Ed.)., IGI Global, USA., pp: 93-111.
- Kumar, M., P. Samui and A.K. Naithani, 2016. Determination of stability of epimetamorphic rock slope using minimax probability machine. Geomatics Nat. Hazards Risk, 7: 186-193.
CrossRef | Direct Link | - Jagan, J., Y. Dalkilic and P. Samui, 2016. Utilization of SVM, LSSVM and GP for Predicting the Medical Waste Generation. In: Smart Cities as a Solution for Reducing Urban Waste and Pollution, Hua, G.B. (Ed.)., IGI Global, USA., pp: 224-251.
- Jagan, J., P. Samui and B. Dixon, 2016. Determination of Rate of Medical Waste Generation Using RVM, MARS and MPMR. In: Handbook of Research on Waste Management Techniques for Sustainability, Akkucuk, U. (Ed.)., IGI Global, USA., pp: 1-18.
- Jagan, J., G. Meghana and P. Samui, 2016. Determination of Stability Number of Layered Slope Using ANFIS, GPR, RVM and ELM. In: Soft Computing: Developments, Methods and Applications, Casey, A. (Ed.)., Nova Science Publishers, UK., pp: 39-68.
- Deo, R.C., P. Samui and D. Kim, 2016. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environ. Res. Risk Assess., 30: 1769-1784.
CrossRef | Direct Link | - Viswanathan, R., P. Kurup and P. Samui, 2015. Examining efficacy of metamodels in predicting ground water table. Int. J. Performability Eng., 11: 275-281.
Direct Link | - Viswanathan, R., J. Jagan, P. Samui and P. Porchelvan, 2015. Spatial variability of rock depth using simple kriging, ordinary Kriging, RVM and MPMR. Geotechnical Geol. Eng., 33: 69-78.
CrossRef | Direct Link | - Shah, V.S., H.R. Shah and P. Samui, 2015. Application of Meta-Models (MPMR and ELM) for Determining OMC, MDD and Soaked CBR Value of Soil. In: Advanced Research on Hybrid Intelligent Techniques and Applications, Bhattacharyya, S., P. Banerjee, D. Majumdar and P. Dutta (Eds.)., IGI Global, USA., pp: 454-482.
- Samui, P., Y.H. Dalkilic, H. Rajadurai and J. Jagan, 2015. Minimax Probability Machine: A New Tool for Modeling Seismic Liquefaction Data. In: Handbook of Research on Swarm Intelligence in Engineering, Bhattacharyya, S. and P. Dutta (Eds.)., IGI Global, USA., pp: 182-210.
- Samui, P., D. Kim and R. Viswanathan, 2015. Spatial variability of rock depth using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multivariate Adaptive Regression Spline (MARS). Environ. Earth Sci., 73: 4265-4272.
CrossRef | Direct Link | - Samui, P., D. Kim and R. Hariharan, 2015. Determination of seismic liquefaction potential of soil based on strain energy concept. Environ. Earth Sci., 74: 5581-5585.
CrossRef | Direct Link | - Samui, P., D. Kim and B.G. Aiyer, 2015. Pullout capacity of small ground anchor: A least square support vector machine approach. J. Zhejiang Univ. Sci. A, 16: 295-301.
CrossRef | Direct Link | - Samui, P., 2015. Prediction of fracture parameters of concrete by relevance vector machine. Int. J. Eng. Res. Afr., 17: 1-7.
- Samui, P., 2015. Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering. IGI Global, USA.
- Samui, P. and D. Kim, 2015. Determination of the angle of shearing resistance of soils using multivariate adaptive regression spline. Marine Georesour. Geotechnol., 33: 542-545.
CrossRef | Direct Link | - Praseeda, E., B. John, C. Srinivasan, Y. Singh, K.S. Divyalakshmi and P. Samui, 2015. Thenmala fault system, southern India: Implication to neotectonics. J. Geol. Soc. India, 86: 391-398.
CrossRef | Direct Link | - Jagan, J., G. Prabhakar and P. Samui, 2015. Utilization of Classification Techniques for the Determination of Liquefaction Susceptibility of Soils. In: Advanced Research on Hybrid Intelligent Techniques and Applications, Bhattacharyya, S., P. Banerjee, D. Majumdar and P. Dutta (Eds.)., IGI Global, USA., pp: 124-160.
- Yuvaraj, P., A.R. Murthy, N.R. Iyer, P. Samui and S.K. Sekar, 2014. Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine. Int. J. Damage Mech., 23: 979-1004.
CrossRef | Direct Link | - Yuvaraj, P., A.R. Murthy, N.R. Iyer, P. Samui and S.K. Sekar, 2014. Prediction of critical stress intensity factor for high strength and ultra high strength concrete beams using support vector regression. J. Struct. Eng., 40: 245-253.
- Yuvaraj, P., A.R. Murthy, N.R. Iyer, S.K. Sekar and P. Samui, 2014. ANN model to predict fracture characteristics of high strength and ultra high strength concrete beams. Comput. Mater. Continua, 43: 193-213.
- Shah, V.S., H.R. Shah, P. Samui, A.R. Murthy and P.A. Merono et al., 2014. Prediction of fracture parameters of high strength and ultra-high strength concrete beams using minimax probability machine regression and extreme learning machine. Comput. Mater. Continua, 44: 73-84.
Direct Link | - Samui, P., R. Hariharan and J. Karthikeyan, 2014. Determination of stability of slope using minimax probability machine. Georisk: Assess. Manage. Risk Eng. Syst. Geohazards, 8: 147-151.
CrossRef | Direct Link | - Samui, P., D. Choubisa and A. Sharda, 2014. Application of Artificial Neural Network and Genetic Programming in Civil Engineering. In: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining, Alam, S., G. Dobbie, Y.S. Koh and Saeed ur Rehman (Eds.)., IGI Global, USA., pp: 204-220.
- Samui, P., 2014. Vector machine techniques for modeling of seismic liquefaction data. Ain Shams Eng. J., 5: 355-360.
CrossRef | Direct Link | - Samui, P., 2014. Utilization of gaussian process regression for determination of soil electrical resistivity. Geotechnical Geol. Eng., 32: 191-195.
CrossRef | Direct Link | - Samui, P., 2014. Use of minimax probability machine regression for modelling of settlement of shallow foundations on cohesionless soil. Int. J. Performability Eng., 10: 325-328.
Direct Link | - Samui, P., 2014. Determination of surface and hole quality in drilling of AISI D2 cold work tool steel using MPMR, MARS and LSSVM. J. Adv. Manuf. Syst., 13: 237-246.
CrossRef | Direct Link | - Samui, P., 2014. Determination of Pull Out Capacity of Small Ground Anchor Using Data Mining Techniques. In: Data Mining and Analysis in Engineering Field, Bhatnagar, V. (Ed.)., IGI Global, USA., pp: 80-88.
- Samui, P. and Y. Dalkilic, 2014. Modeling of Wind Speed Profile Using Soft Computing Techniques. In: Soft Computing Applications for Renewable Energy and Energy Efficiency, Cascales, M.D.S.G., J.M.S. Lozano, A.D.M. Arredondo and C.C. Corona (Eds.)., IGI Global, USA., pp: 252-273.
- Samui, P. and R. Hariharan, 2014. Modeling of SPT seismic liquefaction data using minimax probability machine. Geotechnical Geol. Eng., 32: 699-703.
CrossRef | Direct Link | - Samui, P. and R. Hariharan, 2014. A unified classification model for prediction of seismic liquefaction potential of soil. J. Adv. Res., 6: 587-592.
- Samui, P. and J. Karthikeyan, 2014. The use of a relevance vector machine in predicting liquefaction potential. Indian Geotechnical J., 44: 458-467.
CrossRef | Direct Link | - Samui, P. and H.Y. Dalkilic, 2014. GPR and RVM-Based Predictions of Surface and Hole Quality in Drilling of AISI D2 Cold Work Tool Steel. In: Handbook of Research on Artificial Intelligence Techniques and Algorithms, Vasant, P. (Ed.)., IGI Global, USA., pp: 736-762.
- Samui, P. and D. Kim, 2014. Applicability of artificial intelligence to reservoir induced earthquakes. Acta Geophys., 62: 608-619.
CrossRef | Direct Link | - Samui, P. and B. Dixon, 2014. Determination of contaminatated wells to No₃-N: A novel vulnerability assessment tool. J. Urban Environ. Eng., 8: 243-249.
Direct Link | - Parab, S., S. Srivastava, P. Samui and A.R. Murthy, 2014. Prediction of fracture parameters of high strength and ultra-high strength concrete beams using gaussian process regression and least squares support vector machine. Comput. Modeling Eng. Sci., 101: 139-158.
- Okkan, U., Z.A. Serbes and P. Samui, 2014. Relevance vector machines approach for long-term flow prediction. Neural Comput. Applic., 25: 1393-1405.
CrossRef | Direct Link | - Kumar, M., B.G. Aiyer and P. Samui, 2014. Machine learning techniques applied to uniaxial compressive strength of oporto granite. Int. J. Performability Eng., 10: 189-195.
Direct Link | - Karthikeyan, J. and P. Samui, 2014. Application of statistical learning algorithms for prediction of liquefaction susceptibility of soil based on shear wave velocity. Geomatics Nat. Hazards Risk, 5: 7-25.
CrossRef | Direct Link | - Aiyer, B.G., D. Kim, N. Karingattikkal, P. Samui and P.R. Rao, 2014. Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civil Eng., 18: 1753-1758.
CrossRef | Direct Link | - Yuvaraj, P., A.R. Murthy, N.R. Iyer, S.K. Sekar and P. Samui, 2013. Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fracture Mech., 98: 29-43.
CrossRef | Direct Link | - Samuk, P. and M. Kumar, 2013. Analysis of epimetamorphic rock slopes using soft computing. J. Shanghai Jiaotong Univ., 19: 274-278.
Direct Link | - Samui, P., T. Lansivaara and M.R. Bhatt, 2013. Least square support vector machine applied to slope reliability analysis. Geotechnical Geol. Eng., 31: 1329-1334.
CrossRef | Direct Link | - Samui, P., 2013. Support vector classifier analysis of slope. Geomatics Nat. Hazards Risk, 4: 1-12.
CrossRef | Direct Link | - Samui, P., 2013. Multivariate adaptive regression spline (Mars) for prediction of elastic modulus of jointed rock mass. Geotechnical Geol. Eng., 31: 249-253.
CrossRef | Direct Link | - Samui, P., 2013. Liquefaction prediction using support vector machine model based on cone penetration data. Frontiers Struct. Civil Eng., 7: 72-82.
CrossRef | Direct Link | - Samui, P., 2013. Determination of compressive strength of concrete by statistical learning algorithms. Eng. J., 17: 111-120.
CrossRef | Direct Link | - Samui, P. and J. Karthikeyan, 2013. Determination of liquefaction susceptibility of soil: A least square support vector machine approach. Int. J. Numer. Anal. Methods Geomechan., 37: 1154-1161.
CrossRef | Direct Link | - Samui, P. and J. Jagan, 2013. Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach. Frontiers Struct. Civil Eng., 7: 133-136.
CrossRef | Direct Link | - Samui, P. and D. Kim, 2013. Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput. Applic., 23: 1123-1127.
CrossRef | Direct Link | - Samui, P. and D. Kim, 2013. Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput. Applic., 23: 1123-1127.
CrossRef | Direct Link | - Samui, P. and D. Kim, 2013. Determination of reservoir induced earthquake using support vector machine and gaussian process regression. Applied Geophys., 10: 229-234.
CrossRef | Direct Link | - Muduli, P.K., M.R. Das, P. Samui and S.K. Das, 2013. Uplift capacity of suction caisson in clay using artificial intelligence techniques. Marine Georesour. Geotechnol., 31: 375-390.
CrossRef | Direct Link | - Kumar, M., P. Samui and A.K. Naithani, 2013. Determination of uniaxial compressive strength and modulus of elasticity of travertine using machine learning techniques. Int. J. Adv. Soft Comput. Applic., 5: 1-10.
- Kumar, M., M. Mittal and P. Samui, 2013. Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation. Earthquake Sci., 26: 147-150.
CrossRef | Direct Link | - Karthikeyan, J. and P. Samui, 2013. Determination of strain energy for triggering liquefaction based on Gaussian process regression. Eng. J., 17: 71-78.
CrossRef | Direct Link | - Gopinath, K.G.S., S. Pal, P. Samui and B.K. Sarkar, 2013. Support vector machine and relevance vector machine for prediction of alumina and pore volume fraction in bioceramics. Int. J. Applied Ceramic Technol., 10: E240-E246.
CrossRef | Direct Link | - Ceryan, N., U. Okkan, P. Samui and S. Ceryan, 2013. Modeling of tensile strength of rocks materials based on support vector machines approaches. Int. J. Numerical Anal. Methods Geomechanics, 37: 2655-2670.
CrossRef | Direct Link | - Samui, P., T. Edison, C. Harikumar and C.S. Pillai, 2012. Site characterization of (IGCAR) Kalpakkam using soft computing technices. Int. J. Adv. Soft Comput. Applic., 4: 1-14.
Direct Link | - Samui, P., S. Bhattacharya and T.G. Sitharam, 2012. Support vector classifiers for prediction of pile foundation performance in liquefied ground during earthquakes. Int. J. Geotech. Earthquake Eng., 3: 42-59.
CrossRef | Direct Link | - Samui, P., P.H. Gowda, T. Oommen, T.A. Howell, T.H. Marek and D.O. Porter, 2012. Statistical learning algorithms for identifying contrasting tillage practices with Landsat Thematic Mapper data. Int. J. Remote Sens., 33: 5732-5745.
CrossRef | Direct Link | - Samui, P., D. Kim, S. Das and G.L. Yoon, 2012. Determination of compression index for marine clay: A relevance vector machine approach. Mar. Georesour. Geotechnol., 30: 263-273.
CrossRef | Direct Link | - Samui, P., 2012. Three-dimensional site characterization model of bangalore using support vector machine. ISRN Soil Sci., Vol. 2012. 10.5402/2012/346439.
CrossRef | - Samui, P., 2012. Slope Stability Analysis Using Multivariate Adaptive Regression Spline. In: Metaheuristics in Water, Geotechnical and Transport Engineering, Yang, X.S., A.H. Gandomi, S. Talatahari and A.H. Alavi (Eds.)., Elsevier, London, pp: 327-344.
- Samui, P., 2012. Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach. Int. J. Numer. Anal. Methods Geomech., 36: 1434-1439.
CrossRef | Direct Link | - Samui, P., 2012. Application of support vector machine in P-wave attenuation in sandatones. Int. J. Geotechnics Environ., 4: 1-13.
- Samui, P., 2012. Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil. Int. J. Numer. Anal. Methods Geomech., 36: 100-110.
CrossRef | Direct Link | - Samui, P., 2012. Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils. Geotechnical Geol. Eng., 30: 1261-1270.
CrossRef | Direct Link | - Samui, P., 2012. Applicability of data mining techniques for predicting electrical resistivity of soils based on thermal resistivity. Int. J. Geomechanics, 13: 692-697.
CrossRef | Direct Link | - Samui, P., 2012. A study of slope stability prediction using least square support vector machine. J. Applied Mech. Eng., 17: 279-287.
Direct Link | - Samui, P. and P. Kurup, 2012. Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay. Int. J. Applied Metaheuristic Comput., 3: 33-42.
- Samui, P. and P. Kurup, 2012. Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft Comput., 16: 1347-1351.
CrossRef | Direct Link | - Samui, P. and D.P. Kothari, 2012. Artificial Intelligence in Civil Engineering. VDM Publishing House Ltd., Germany.
- Samui, P. and D. Kim, 2012. Utilization of support vector machine for prediction of fracture parameters of concrete. Comput. Concrete, 9: 215-226.
CrossRef | Direct Link | - Samui, P. and D. Kim, 2012. Modelling of reservoir-induced earthquakes: A multivariate adaptive regression spline. J. Geophys. Eng., Vol. 9. 10.1088/1742-2132/9/5/494.
CrossRef | - Samui, P. and B. Dixon, 2012. Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol. Processes, 26: 1361-1369.
CrossRef | Direct Link | - Okkan, U. and P. Samui, 2012. Modeling of watershed runoff using discrete wavelet transform and support vector machines. Fresenius Environ. Bull., 21: 3971-3986.
- Venkatesh, S., P. Samui, D. Kim and S.K. Sekar, 2011. Application of statistical learning algorithm for determination of failure mechanism of interior beam-column joint. Int. J. Earth Sci. Eng., 4: 1111-1117.
- Samui, P., V.R. Mandla, A. Krishna and T. Teja, 2011. Prediction of rainfall using support vector machine and relevance vector machine. Earth Sci. India, 4: 188-200.
Direct Link | - Samui, P., T. Lansivaara and D. Kim, 2011. Utilization relevance vector machine for slope reliability analysis. Applied Soft Comput., 11: 4036-4040.
CrossRef | Direct Link | - Samui, P., S.K. Sekar and K. Kulkarni, 2011. Machine Learning in Concrete Technology. VDM Publishing House Ltd., Germany.
- Samui, P., S. Das and D. Kim, 2011. Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng., 38: 2123-2127.
CrossRef | Direct Link | - Samui, P., L. See, T. Chaipimonplin and P. Kneale, 2011. Advances in data-driven flood forecasting using radar data. J. Flood Eng., 2: 129-145.
- Samui, P., D. Kim and T.G. Sitharam, 2011. Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity. J. Applied Geophys., 73: 8-15.
CrossRef | Direct Link | - Samui, P., 2011. Utilization of statistical learning algorithms for prediction of elastic modulus of jointed rock mass. Recent Trends Civil Eng. Technol., 1: 1-7.
- Samui, P., 2011. Utilization of relevance vector machine for rock slope stability analysis. Int. J. Geotech. Eng., 5: 351-355.
CrossRef | Direct Link | - Samui, P., 2011. Utilization of least square support vector machine (LSSVM) for prediction of liquefaction susceptibility of soil. Int. J. Sens. Comput. Control, 1: 111-116.
Direct Link | - Samui, P., 2011. Prediction of pile bearing capacity using support vector machine. Int. J. Geotech. Eng., 5: 95-102.
CrossRef | Direct Link | - Samui, P., 2011. Multivariate adaptive regression spline applied to friction capacity of driven piles in clay. Geomech. Eng., 3: 285-290.
CrossRef | Direct Link | - Samui, P., 2011. Least square support vector machine applied to elastic modulus of jointed rock mass. J. Rock Mech. Tunneling Technol., 17: 5-12.
- Samui, P., 2011. Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Nat. Hazards, 59: 811-822.
CrossRef | Direct Link | - Samui, P., 2011. Disaster Mitigation and Management: The Relevance of Artificial Intelligence. In: Rebuilding Sustainable Communities with Vulnerable Populations after the Cameras Have Gone: A Worldwide Study, Awotona, A. (Ed.)., Cambridge Scholars Publishing, UK., pp: 357-402.
- Samui, P., 2011. Data Driven Models. VDM Publishing House Ltd., Germany.
- Samui, P., 2011. Application of Least Square Support Vector Machine (LSSVM) for determination of evaporation losses in reservoirs. Engineering, 3: 431-434.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2011. Machine learning modelling for predicting soil liquefaction susceptibility. Nat. Hazards Earth Syst. Sci., 11: 1-9.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2011. Determination of liquefaction susceptability of soil based on field test and artificial intelligence. Int. J. Earth Sci. Eng., 4: 216-222.
- Samui, P. and T.G. Sitharam, 2011. Application of geostatistical models for estimating spatial variability of rock depth. Engineering, 3: 886-894.
CrossRef | Direct Link | - Samui, P. and S. Das, 2011. Site characterization model using support vector machine and ordinary kriging. Int. J. Intell. Syst., 20: 261-278.
CrossRef | Direct Link | - Samui, P. and S. Das, 2011. Relevance vector machine for prediction of soil properties. J. Civil Eng. Res. Pract., 8: 23-33.
CrossRef | Direct Link | - Samui, P. and P. Kurup, 2011. Use of the relevance vector machine for prediction of an overconsolidation ratio. Int. J. Geomech., 13: 26-32.
CrossRef | Direct Link | - Samui, P. and J. Karthikeyan, 2011. Determination of liquefaction susceptibility of soil based on CPT: A least square support vector machine approach. Int. J. Geotech. Environ., 3: 75-84.
- Samui, P. and D.P. Kothari, 2011. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci. Iranica, 18: 53-58.
CrossRef | Direct Link | - Samui, P. and D.P. Kothari, 2011. Application of multivariate adaptive regression splines to evaporation losses in reservoirs. Earth Sci. India, 4: 15-20.
Direct Link | - Mitra, N. and P. Samui, 2011. Prediction of inelastic mechanisms leading to seismic failure of interior reinforced concrete beam-column connections. Pract. Periodical Struct. Des. Construct., 17: 110-118.
- Kallyan, S.K., P. Samui, D. Kim and S.K. Sekar, 2011. Model of least square support vector machine (LSSVM) for prediction of fracture parameters of concrete. Int. J. Concrete Struct. Mater., 5: 21-25.
- Das, S.K., P. Samui, D. Kim, N. Sivakugan and R. Biswal, 2011. Lateral displacement of liquefaction induced ground using least square support vector machine. Int. J. Geotech. Earthquake Eng., 2: 29-39.
- Das, S.K., P. Samui and A.K. Sabat, 2011. Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine. Int. J. Geomech., 12: 606-611.
CrossRef | Direct Link | - Das, S.K., P. Samui and A.K. Sabat, 2011. Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotech. Geol. Eng., 29: 329-342.
CrossRef | Direct Link | - Das, S., P. Samui, S.Z. Khan and N. Sivakugan, 2011. Machine learning techniques applied to prediction of residual strength of clay. Cent. Eur. J. Geosci., 3: 449-461.
CrossRef | Direct Link | - Samui, P., S. Das and T.G. Sitharam, 2010. Soft Computing in Geotechnical Engineering. VDM Publishing House Ltd., Germany.
- Samui, P., 2010. Support vector machine for evaluating seismic liquefaction potential using standard penetration test. Disaster Adv., 3: 20-25.
- Samui, P., 2010. Slope Stability and Liquefaction. VDM Publishing House Ltd., Germany.
- Samui, P., 2010. Seismic liquefaction potential assessed by least square support vector machine (LSSVM). Int. J. Eng. Uncertainty: Hazards Assess. Mitigation, 2: 151-155.
- Samui, P., 2010. Artificial Intelligence in Earthquake Engineering. LAP Lambert Academic Publishing AG & Co. KG., Germany.
- Samui, P., 2010. Application of support vector machine for rock slope stability analysis. J. Rock Mech. Tunneling Technol., 16: 113-122.
- Samui, P., 2010. Application of soft computing in disaster mitigation and management. Disaster Adv., 3:: 3-3.
- Samui, P. and T.G. Sitharam, 2010. Spatial variability of rock depth using artificial intelligence techniques. Earth Sci. India, 3: 195-205.
- Samui, P. and T.G. Sitharam, 2010. Spatial variability of SPT data using ordinary and disjunctive kriging. Georisk, 4: 22-31.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2010. Site characterization model using leastâ€square support vector machine and relevance vector machine based on corrected SPT data (Nc). Int. J. Numer. Anal. Methods Geomech., 34: 755-770.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2010. Site characterization model using artificial neural network and kriging. Int. J. Geomech., 10: 171-180.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2010. Relevance Vector Machine for Evaluating Seismic Liquefaction Potential Using Shear Wave Velocity. In: Soil Dynamics and Earthquake Engineering, Huang, M., X. Yu and Y. Huang (Eds.). ASCE Publication, Reston, VA., ISBN: 978-0-7844-1102-5, pp: 212-217.
- Samui, P. and T.G. Sitharam, 2010. Intelligent Models in Geotechnical Engineering. LAP Lambert Academic Publishing AG & Co. KG., Germany.
- Samui, P. and T.G. Sitharam, 2010. Design of a piezovibrocone and calibration chamber. Geomech. Eng.: Int. J., 2: 177-190.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2010. Correlation between SPT, CPT and MASW. Int. J. Geotech. Eng., 4: 279-288.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2010. Applicability of statistical learning algorithms for spatial variability of rock depth. Math. Geol., 42: 433-446.
CrossRef | Direct Link | - Kumar, B. and P. Samui, 2010. Determination of stability numbers for soil slopes following non-associated non-coaxial flow rule. Int. J. Geotechn. Eng., 4: 89-97.
CrossRef | Direct Link | - Das, S.K., P. Samui, A.K. Sabat and T.G. Sitharam, 2010. Prediction of swelling pressure of soil using artificial intelligence techniques. Environ. Earth Sci., 61: 393-403.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2009. Pullout capacity of small ground anchors: A relevance vector machine approach. Geomech. Eng.: Int. J., 1: 259-262.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2009. Application of least squares support vector machine in seismic attenuation prediction. ISET J. Earthquake Technol., 46: 147-155.
Direct Link | - Sitharam, T.G., P. Samui and A. Panjamani, 2008. Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models. Geotech. Geol. Eng., 26: 503-517.
CrossRef | Direct Link | - Samui, P., T.G. Sitharam and P.U. Kurup, 2008. OCR prediction using support vector machine based on piezocone data. J. Geotech. GeoEnviron. Eng., 134: 894-898.
CrossRef | Direct Link | - Samui, P., 2008. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput. Goetech., 35: 419-427.
CrossRef | Direct Link | - Samui, P., 2008. Slope stability analysis: A support vector machine approach. Environ. Geol., 26: 255-267.
CrossRef | Direct Link | - Samui, P., 2008. Relevance vector machine applied to settlement of shallow foundation on cohesionless soils. Goerisk, 2: 41-47.
CrossRef | Direct Link | - Samui, P., 2008. Prediction of friction capacity of driven piles in clay using the support vector machine. Can. Geotech. J., 45: 288-295.
CrossRef | Direct Link | - Samui, P., 2008. Predicted ultimate capacity of laterally loaded piles in clay using support vector machine. Geomech. Geoeng., 3: 113-120.
CrossRef | Direct Link | - Samui, P. and T.G. Sitharam, 2008. Leastâ€square support vector machine applied to settlement of shallow foundations on cohesionless soils. Int. J. Numer. Anal. Methods Geomech., 32: 2033-2043.
CrossRef | Direct Link | - Kumar, J. and P. Samui, 2008. Frequency effect on liquefaction using shake table tests. J. S. Asian Geotech. Soc., 39: 169-173.
- Sitharam, T.G. and P. Samui, 2007. Geostatistical modelling of spatial and depth variability of SPT data for Bangalore. Geomech. Geoeng., 2: 307-316.
CrossRef | Direct Link | - Samui, P., 2007. Seismic liquefaction potential assessment by using relevance vector machine. Earthquake Eng. Eng. Vibration, 6: 331-336.
CrossRef | Direct Link | - Samui, P., 2007. Application of relevance vector machine in seismic attenuation prediction. J. Earthquake Tsunami, 1: 299-309.
CrossRef | Direct Link | - Kumar, B. and P. Samui, 2007. Application of ANN for predicting pore water pressure response in a shake table test. Int. J. Geotech. Eng., 2: 153-160.
CrossRef | Direct Link | - Samui, P. and B. Kumar, 2006. Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule. Electron. J. Geotech. Eng., 11: 1-44.
Direct Link | - Kumar, J. and P. Samui, 2006. Stability determination for layered soil slopes using the upper bound limit analysis. Geotech. Geol. Eng., 24: 1803-1819.
CrossRef | Direct Link |