Dr. Sanjay Singh
Associate ProfessorAhmedabad University, India
Highest Degree
Ph.D. in Biotechnology from Pune University, India
Share this Profile
Area of Interest:
Selected Publications
- Vallabani, N.V.S. and S. Singh, 2018. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3Biotech, Vol. 8. 10.1007/s13205-018-1286-z.
CrossRef | Direct Link | - Singh, S., R. Asal and S. Bhagat, 2018. Multifunctional antioxidant nanoliposomeâ€mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. J. Biomed. Mater. Res. Part A., 106: 3152-3164.
CrossRef | Direct Link | - Singh, S., 2018. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Nanomed., 13: 11-13.
CrossRef | PubMed | Direct Link | - Singh, S., 2018. Catalytically active nanomaterials: Artificial enzymes of next generation. Nanosci. Technol., 4: 1-6.
- Singh, R. and S. Singh, 2018. Uptake and toxicity of different nanoparticles towards a tough bacterium: Deinococcus radiodurans. Adv. Mater. Lett., 9: 531-537.
CrossRef | Direct Link | - Singh, P., S. Singh and G.S. Pandi, 2018. Effective heart disease prediction system using data mining techniques. Int. J. Nanomed., 13: 121-124.
CrossRef | PubMed | Direct Link | - Shah, K.D., S. Bhagat, D. Varade and S. Singh, 2018. Novel synthesis of polyoxyethylene cholesteryl ether coated Fe-Pt nanoalloys: A multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surf. A: Physicochem. Eng. Aspects, 553: 50-57.
CrossRef | Direct Link | - Shah, J. and S. Singh, 2018. Unveiling the role of ATP in amplification of intrinsic peroxidase-like activity of gold nanoparticles. 3 Biotech, Vol. 8. 10.1007/s13205-017-1082-1.
CrossRef | Direct Link | - Shah, D., R. Savaliya, P. Patel, K. Kansara, A. Pandya, A. Dhawan and S. Singh, 2018. Curcumin Ag nanoconjugates for improved therapeutic effects in cancer. Int. J. Nanomed., 13: 75-77.
CrossRef | PubMed | Direct Link | - Sachaniya, J., R. Savaliya, R. Goyal and S. Singh, 2018. Liposomal formulation of vitamin A for the potential treatment of osteoporosis. Int. J. Nanomed., 13: 51-53.
CrossRef | PubMed | Direct Link | - Rather, H.A., R. Thakore, R. Singh, D. Jhala, S. Singh and R. Vasita, 2018. Antioxidative study of cerium oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Mater., 3: 201-211.
CrossRef | Direct Link | - Purohit, R. and S. Singh, 2018. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J. Nanomed., 13: 15-17.
CrossRef | PubMed | Direct Link | - Patel, P., K. Kansara, R. Singh, R.K. Shukla, S. Singh, A. Dhawan and A. Kumar, 2018. Cellular internalization and antioxidant activity of cerium oxide nanoparticles in human monocytic leukemia cells. Int. J. Nanomed., 13: 39-41.
CrossRef | PubMed | Direct Link | - Karim, M.N., S.R. Anderson, S. Singh, R. Ramanathan and V. Bansal, 2018. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens. Bioelectron., 110: 8-15.
CrossRef | Direct Link | - Karim, M.N., M. Singh, P. Weerathunge, P. Bian and R. Zheng et al., 2018. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Applied Nano Mater., 1: 1694-1704.
CrossRef | Direct Link | - Bhagat, S., N.S. Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti and S. Singh, 2018. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci., 513: 831-842.
CrossRef | Direct Link | - Vallabani, N.V.S., A.S. Karakoti and S. Singh, 2017. ATP catalyzed peroxidase mimetic activity of Fe3O4 nanoparticles at physiological pH. Colloids Surf. B: Biointerfaces, 153: 52-60.
- Singh, S., 2017. Glucose decorated gold nanoclusters: A membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf. B: Biointerfaces, 155: 25-34.
CrossRef | Direct Link | - Sargia, B., J. Shah, R. Singh, H. Arya, M. Shah A. Karakoti and S. Singh, 2017. Phosphate-dependent modulation of antibacterial strategy: A redox state-controlled toxicity of cerium oxide nanoparticles. Bull. Mater. Sci., 70: 1231-1240.
CrossRef | Direct Link | - Gowda, R., G. Kardos, A. Sharma, S. Singh and G.P. Robertson, 2017. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol. Cancer Ther., 16: 440-452.
- Singh, S., 2016. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, Vol. 11. 10.1116/1.4966535.
CrossRef | Direct Link | - Singh, S. and A. Kumar, 2016. Engineered nanomaterials: Safety and health hazard. Int. J. Nanotechnol. Nanomed., 1: 1-23.
- Singh, R., A.S. Karakoti, W. Self, S. Seal and S. Singh, 2016. Redox-sensitive cerium oxide nanoparticles protect human keratinocytes from oxidative stress induced by glutathione depletion. Langmuir, 32: 12202-12211.
CrossRef | Direct Link | - Savaliya, R., P. Singh and S. Singh, 2016. Pharmacological drug delivery strategies for improved therapeutic effects: Recent advances. Curr. Pharm. Des., 22: 1506-1520.
PubMed | Direct Link | - Purohit, R., N.V.S. Vallabani, R.K. Shukla, A. Kumar and S. Singh, 2016. Effect of gold nanoparticle size and surface coating on human red blood cells. Bioinspired Biomimetic Nanobiomater., 5: 121-131.
- Singh, R. and S. Singh, 2015. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B: Biointerfaces, 132: 78-84.
CrossRef | Direct Link | - Shah, J., R. Purohit, R. Singh, A.S. Karakoti and S. Singh, 2015. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci., 456: 100-107.
CrossRef | Direct Link | - Savaliya, R., D. Shah, R. Singh, A. Kumar, R. Shankar, A. Dhawan and S. Singh, 2015. Nanotechnology in disease diagnostic techniques. Curr. Drug Metabolism, 16: 645-661.
Direct Link | - Pandya, A., A. Tripathi, R. Purohit, S. Singh and M.I. Nandasirid et al., 2015. Fluorescent magnesium nanocomplex in a protein scaffold for cell nuclei imaging applications. RSC Adv., 5: 94236-94240.
CrossRef | Direct Link | - Karakoti, A.S., R.K. Shukla, R. Shanker and S. Singh, 2015. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci., 215: 28-45.
CrossRef | Direct Link | - Kansara, K., P. Patel, D. Shah, R.K. Shukla, S. Singh, A. Kumar and A. Dhawan, 2015. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagenesis, 56: 204-217.
CrossRef | Direct Link | - Vallabani, N.V.S., R.K. Shukla, D. Konka, A. Kumar, S. Singh and A. Dhawan, 2014. TiO2 nanoparticles induced micronucleus formation in human liver (HepG2) cells: Comparison of conventional and flow cytometry based methods. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P79.
CrossRef | Direct Link | - Singh, R., R.K. Shukla, A. Kumar, A. Dhawan and S. Singh, 2014. PEGylated nanoceria protect human epidermal cells from reactive oxygen species. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P78.
CrossRef | Direct Link | - Shukla, R.K., A. Kumar, N.V.S. Vallabani, S. Singh and A. Dhawan, 2014. TiO2 NPs induced hepatic injury in mammals: A mechanistic approach. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P82.
CrossRef | Direct Link | - Purohit, R., N.V.S. Vallabani, R.K. Shukla, A. Kumar, A. Dhawan and S. Singh, 2014. BSA coated gold nanoparticles exhibit size dependent interaction with lung cancer (A549) cells. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P83.
CrossRef | Direct Link | - Patel, P., K. Kansara, D. Shah, N.V.S. Vallabani and R.K. Shukla et al., 2014. Cytotoxicity assessment of ZnO nanoparticles on human epidermal cells. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P81.
CrossRef | Direct Link | - Kansara, K., P. Patel, D. Shah, N.V.S. Vallabani and R.K. Shukla et al., 2014. TiO2 nanoparticles induce cytotoxicity and genotoxicity in human alveolar cells. Mol. Cytogenetics, Vol. 7. 10.1186/1755-8166-7-S1-P77.
CrossRef | Direct Link | - Singh, S., 2013. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. BioImpacts, 3: 53-65.
CrossRef | PubMed | Direct Link | - Hirst, S.M., A. Karakoti, S. Singh, W. Self, R. Tyler, S. Seal and C.M. Reilly, 2013. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ. Toxicol., 28: 107-118.
CrossRef | Direct Link | - Das, S., S. Singh, D. Joung, J. Dowding and D. Reid et al., 2013. Oxygenated functional group density on graphene oxide: Its effect on cell toxicity. Particle Particle Syst. Characterization, 30: 148-157.
CrossRef | Direct Link | - Srivastava, M., S. Singh and W.T. Self, 2012. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ. Health Perspect., 120: 56-61.
CrossRef | Direct Link | - Singh, V., S. Singh, S. Das, A. Kumar, W.T. Self and S. Seal, 2012. A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: Release kinetics and biological activity. Nanoscale, 4: 2597-2605.
CrossRef | Direct Link | - Singh, S., A. Sharma and G.P. Robertson, 2012. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res., 72: 5663-5668.
CrossRef | Direct Link | - Das, S., S. Singh, J. Dowding, S. Oommen and A. Kumar et al., 2012. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials, 33: 7746-7755.
CrossRef | Direct Link | - Singh, S., T. Pirmohamed, A. S. Karakoti, A. Kumar, S. Seal and W.T. Self, 2011. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 32: 6745-6753.
CrossRef | Direct Link | - Singh, S., V. D’Britto, A. Prabhune, A. Dhawan, C.V. Ramanna and B.L.V. Prasad, 2010. Cytotoxic and genotoxic assessment of glycolipid-reduced and-capped gold and silver nanoparticles. New J. Chem., 34: 294-301.
CrossRef | Direct Link | - Singh, S., V. D'Britto, A. Dhawan, M. Sastry and B.L.V. Prasad, 2010. Bacterial synthesis of photocatalytically active and biocompatible TiO2 and ZnO nanoparticles. Int. J. Green Nanotechnol., 2: 80-99.
CrossRef | Direct Link | - Singh, S., A. Kumar, A. Karakoti, S. Seal and W.T. Self, 2010. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. BioSyst., 6: 1813-1820.
CrossRef | Direct Link | - Pirmohamed, T., J.M. Dowding, S. Singh, B. Wasserman and E. Heckert et al., 2010. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 46: 2736-2738.
CrossRef | Direct Link | - Karakoti, A., S. Singh, J.M. Dowding, S. Seal and W.T. Self, 2010. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev., 39: 4422-4432.
CrossRef | Direct Link | - Singh, S., P. Patel, S. Jaiswal, A.A. Prabhune, C.V. Ramana and B.L.V. Prasad, 2009. A direct method for the preparation of glycolipid-metal nanoparticle conjugates: Sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J. Chem., 33: 646-652.
CrossRef | Direct Link | - Kumar, A., S. Singh, P. Poddar, A. Prabhune and A. Pundle, 2009. Effect of cultural conditions and media constituents on production of Penicillin V acylase and CTAB treatment to enhance whole-cell enzyme activity of Rhodotorula aurantiaca (NCIM 3425). Applied Biochem. Biotechnol., 157: 463-472.
CrossRef | Direct Link | - Karakoti, A.S., S. Singh, A. Kumar, M. Malinska and S.V.N.T. Kuchibhatla et al., 2009. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc., 131: 14144-14145.
CrossRef | Direct Link | - Singh, S., U.M. Bhatta, P.V. Satyam, A. Dhawan, M. Sastry and B.L.V. Prasad, 2008. Bacterial synthesis of silicon/silica nanocomposites. J. Mater. Chem., 18: 2601-2606.
CrossRef | Direct Link | - Parikh, R.Y., S. Singh, B.L.V. Prasad, M.S. Patole, M. Sastry and Y.S. Shouche, 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. Chem. Biochem., 9: 1415-1422.
CrossRef | Direct Link | - Kulkarni, S., A. Sayed, S. Singh, A. Gaikwad, K. Vijayamohanan, A. Ahmed and S. Ogale, 2008. Silicate nanoparticles by bioleaching of glass and modification of the glass surface. J. Non-Crystalline Solids, 354: 3433-3437.
CrossRef | Direct Link | - Hasan, S.S., S. Singh, R.Y. Parikh, M.S. Dharne, M.S. Patole, B.L.V. Prasad and Y.S. Shouche, 2008. Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol., 8: 3191-3196.
CrossRef | Direct Link | - Singh, S., R. Pasricha, U.M. Bhatta, P.V. Sat yam, M. Sastry and B.L.V. Prasad, 2007. Effect of halogen addition to monolayer protected gold nanoparticles. J. Mater. Chem., 16: 1614-1619.
CrossRef | Direct Link | - Singh, S. and B.L.V. Prasad, 2007. Nearly complete oxidation of Auo in hydrophobized nanoparticles to Au3+ ions by N-bromosuccinimide. J. Phys. Chem. C, 111: 14348-14352.
CrossRef | Direct Link | - Kasture, M., S. Singh, P. Patel, P.A. Joy, A.A. Prabhune, C.V. Ramana and B.L.V. Prasad, 2007. Multiutility sophorolipids as nanoparticle capping agents: Synthesis of stable and water dispersible Co nanoparticles. Langmuir, 23: 11409-11412.
CrossRef | Direct Link |