Dr. Santhosh George

Professor
National Institute of Technology Karnataka, India


Highest Degree
Ph.D. in Mathematics and Computer Science from Goa University, India

Share this Profile

Area of Interest:

Mathematics
Mathematical Sciences
Operator Theory
Functional Analysis
Inverse Source Problem

Selected Publications

  1. Sreedeep, C.D., S. George and I.K. Argyros, 2019. Newton-Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces. Rendiconti del Circolo Matematico di Palermo Series. 10.1007/s12215-019-00413-4.
    CrossRef  |  Direct Link  |  

  2. Shubha, V.S., S. George and P. Jidesh, 2019. Third-order derivative-free methods in Banach spaces for nonlinear ill-posed equations. J. Applied Math. Comput. 10.1007/s12190-019-01246-1.
    CrossRef  |  Direct Link  |  

  3. George, S. and I.K. Argyros, 2019. Local convergence comparison between two novel sixth order methods for solving equations. Ann. Univ. Paedagog. Crac. Stud. Math., 18: 5-19.
    CrossRef  |  

  4. Argyros, I.K., Y.J. Cho, S. George and Y.B. Xiao, 2019. Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 113: 2813-2826.
    CrossRef  |  Direct Link  |  

  5. Argyros, I.K., Y.J. Cho and S. George, 2019. Improved local convergence analysis for a three point method of convergence order 1.839. Bull. Korean Math. Soc., 56: 621-629.

  6. Argyros, I.K., S.K. Khattri and S. George, 2019. Local convergence of an at least sixth-order method in Banach spaces. J. Fixed Point Theory Applic., Vol. 21. 10.1007/s11784-019-0662-6.
    CrossRef  |  Direct Link  |  

  7. Argyros, I.K., S. George and S.M. Erappa, 2019. Local Convergence of a novel eighth order method under hypotheses only on the first derivative. Khayyam J. Math., 5: 96-107.
    CrossRef  |  Direct Link  |  

  8. Argyros, I.K., S. George and K. Senapati, 2019. Extending the applicability of the inexact Newton-HSS method for solving large systems of nonlinear equations. Numer. Algorithms. 10.1007/s11075-019-00684-z.
    CrossRef  |  Direct Link  |  

  9. Argyros, I.K. and S. George, 2019. Unified convergence for multi-point super halley-type methods with parameters in banach space. Indian J. Pure Applied Math., 50: 1-13.
    CrossRef  |  Direct Link  |  

  10. Argyros, I.K. and S. George, 2019. Unified convergence analysis of frozen Newton-like methods under generalized conditions. J. Comput. Applied Math., 347: 95-107.
    CrossRef  |  Direct Link  |  

  11. Argyros, I.K. and S. George, 2019. Semi-local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions II. Trans. Math. Program. Applic., 7: 25-30.

  12. Argyros, I.K. and S. George, 2019. On a two-step kurchatov-type method in banach space. Mediterr. J. Math., Vol. 16. 10.1007/s00009-018-1285-7.
    CrossRef  |  Direct Link  |  

  13. Argyros, I.K. and S. George, 2019. Local convergence for an eighth order method for solving equations and systems of equations. Nonlinear Eng., 8: 74-79.
    CrossRef  |  Direct Link  |  

  14. Argyros, I.K. and S. George, 2019. Kantorovich-like convergence theorems for newton’s method using restricted convergence domains. Numer. Funct. Anal. Optimiz., 40: 303-318.
    CrossRef  |  Direct Link  |  

  15. Argyros, I.K. and S. George, 2019. Hybrid newton-like methods with high order of convergence. Adv. Applic. Math. Sci., 18: 387-393.
    Direct Link  |  

  16. Argyros, I.K. and S. George, 2019. Extended semi-local convergence of newton's method using the center lipschitz condition and the restricted convergence domain. Fundam. J. Math. Applic., 2: 5-9.
    CrossRef  |  Direct Link  |  

  17. Argyros, I.K. and S. George, 2019. Convergence of derivative free iterative methods. Creat. Inform., 28: 19-26.

  18. Argyros, I.K. and S. George, 2019. Convergence for variants of Chebyshev-Halley methods using restricted convergence domains. Applic. Math., 46: 115-126.
    CrossRef  |  Direct Link  |  

  19. Argyros, I.K. and S. George, 2019. Ball convergence for a sixth-order multi-point method in Banach spaces under weak conditions. Applic. Math. 10.4064/am2350-2-2018.
    CrossRef  |  Direct Link  |  

  20. Sreedeep, C.D., S. George and I.K. Argyros, 2018. Extended Newton-type iteration for nonlinear ill-posed equations in Banach space. J. Applied Math. Comput., 60: 435-453.
    CrossRef  |  Direct Link  |  

  21. Sabari, M. and S. George, 2018. Modified minimal error method for nonlinear Ill-posed problems. Comput. Methods Applied Math., 18: 313-321.
    CrossRef  |  Direct Link  |  

  22. George, S. and M. Sabari, 2018. Numerical approximation of a Tikhonov type regularizer by a discretized frozen steepest descent method. J. Comput. Applied Math., 330: 488-498.
    CrossRef  |  Direct Link  |  

  23. George, S. and K. Kanagaraj, 2018. Derivative free regularization method for nonlinear ill-posed equations in Hilbert scales. Comput. Methods Applied Math. 10.1515/cmam-2018-0019.
    CrossRef  |  Direct Link  |  

  24. George, S. and I.K. Argyros, 2018. Local convergence for a Chebyshev-type method in Banach space free of derivatives. Adv. Theory Nonlinear Anal. Applic., 2: 62-69.

  25. George, S. and C.D. Sreedeep, 2018. Lavrentiev's regularization method for nonlinear ill-posed equations in Banach spaces. Acta Math. Sci., 38: 303-314.
    CrossRef  |  Direct Link  |  

  26. Argyros, I.K., Y.J. Cho and S. George, 2018. Extended convergence of Gauss-Newton’s method and uniqueness of the solution. Carpathian J. Math., 34: 135-142.

  27. Argyros, I.K., S.K. Khattri and S. George, 2018. On a new semilocal convergence analysis for the Jarratt method. PanAm. Math. J., 28: 72-90.

  28. Argyros, I.K., S. K. Khattri and S. George, 2018. An improved semilocal conver-gence analysis for the Halley method. Adv. Nonlinear Variational Inequalities, 21: 1-17.

  29. Argyros, I.K., S. George and S.M. Erappa, 2018. Extending the applicability of Newton’s and secant methods under regular smoothness. Boletim da Sociedade Paranaense de Matematica, 3: 1-16.
    Direct Link  |  

  30. Argyros, I.K., H. Ren and S. George, 2018. Convergence ball of Muller's method for non-dierentiable functions. PanAm. Math. J., 28: 63-71.

  31. Argyros, I.K. and S. George, 2018. Weak semilocal convergence conditions for a two-step newton method in Banach space. Fundam. J. Math. Applic., 1: 137-144.

  32. Argyros, I.K. and S. George, 2018. Semilocal convergence analysis a fifth-order method using recurrence relation in Banach space under weak conditions. Applic. Math., 45: 223-231.

  33. Argyros, I.K. and S. George, 2018. Semi-local convergence of a Newton-like method for solving equations with a singular derivative. Creat. Math. Inform., 27: 1-8.

  34. Argyros, I.K. and S. George, 2018. On the complexity of choosing majorizing sequences for iterative procedures. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 113: 1463-1473.
    CrossRef  |  Direct Link  |  

  35. Argyros, I.K. and S. George, 2018. Local convergence of bilinear operator free methods under weak conditions. Matematicki Vesnik, 70: 1-11.

  36. Argyros, I.K. and S. George, 2018. Local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions. Commun. Applied Nonlinear Anal., 25: 85-97.

  37. Argyros, I.K. and S. George, 2018. Local convergence of a multi-point family of high order methods in banach spaces under holder continuous derivative. Int. J. Adv. Math., 2018: 53-60.

  38. Argyros, I.K. and S. George, 2018. Local convergence of a Hansen-Patrick-like family of optimal fourth order methods. TWMS J. Pure Applied Math., 9: 32-39.
    Direct Link  |  

  39. Argyros, I.K. and S. George, 2018. Local convergence for fifth order Traub-Ste ensen-Chebyshev-like composition free of derivatives in Banach space. Numer. Math. Theor. Meth. Appl., 11: 160-168.

  40. Argyros, I.K. and S. George, 2018. Local convergence for composite Chebyshev-type methods. Commun. Adv. Math. Sci., 1: 1-5.

  41. Argyros, I.K. and S. George, 2018. Local convergence for a family of sixth order Chebyshev-Halley-type methods in banach space under weak conditions. Khayyam J. Math., 4: 1-12.
    CrossRef  |  Direct Link  |  

  42. Argyros, I.K. and S. George, 2018. Local convergence analysis of an efficient fourth order weighted-newton method under weak conditions. Ann. West Univ. Timisoara-Math. Comput. Sci., 56: 23-34.
    CrossRef  |  Direct Link  |  

  43. Argyros, I.K. and S. George, 2018. Increasing the order of convergence for iterative methods in Banach space under weak conditions. Malaya J. Matematik, 6: 396-401.
    CrossRef  |  Direct Link  |  

  44. Argyros, I.K. and S. George, 2018. Improved semi-local convergence of the Gauss-Newton method for systems of equations. J. Math. Sci. Model., 1: 80-85.
    Direct Link  |  

  45. Argyros, I.K. and S. George, 2018. Improved secant-updates of rank 1 in Hilbert space. Adv. Nonlinear Variational Inequalities, 21: 49-54.

  46. Argyros, I.K. and S. George, 2018. Improved complexity of a homotopy method for locating an approximate zero. Punjab Univ. J. Math., 50: 1-10.
    Direct Link  |  

  47. Argyros, I.K. and S. George, 2018. Extending the applicability of the super-halley-like method using ω-continuous derivatives and restricted convergence domains. Ann. Math. Silesianae. 10.2478/amsil-2018-0008.
    CrossRef  |  Direct Link  |  

  48. Argyros, I.K. and S. George, 2018. Extending the applicability of an Ulm-Newton-like method under generalized conditions in Banach space. Res. Rep. Math., Vol. 2. .
    Direct Link  |  

  49. Argyros, I.K. and S. George, 2018. Extended optimality of the secant method on banach spaces. Commun. Optim. Theory, Vol. 2018. .
    Direct Link  |  

  50. Argyros, I.K. and S. George, 2018. Expanding the applicability of generalized high convergence order methods for solving equations. Khayyam J. Math., 4: 167-177.
    CrossRef  |  Direct Link  |  

  51. Argyros, I.K. and S. George, 2018. Enlarging the radius of convergence for the halley method to solve equations with solutions of multiplicity under weak conditions. Res. Rep. Math., Vol. 2. .
    Direct Link  |  

  52. Argyros, I.K. and S. George, 2018. Enlarging the ball convergence for the modified Newton method to solve equations with solutions of multiplicity under weak conditions. Numer. Math. Theor. Meth. Appl., 11: 506-517.

  53. Argyros, I.K. and S. George, 2018. Ball convergence of some iterative methods for nonlinear equations in Banach space under weak conditions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matematicas, 112: 1169-1177.
    CrossRef  |  Direct Link  |  

  54. Argyros, I.K. and S. George, 2018. A unified local convergence for two-step Newton-type methods with high order of convergence under weak conditions. Sohag J. Math., 5: 1-8.

  55. Argyros, I. and S. George, 2018. Unified semi-local convergence for k-step iterative methods with flexible and frozen linear operator. Mathematics, Vol. 6. 10.3390/math6110233.
    CrossRef  |  Direct Link  |  

  56. Argyros, I. and S. George, 2018. Expanding the applicability of generalized high convergence order methods for solving equations. Khayyam J. Math., 4: 167-177.

  57. George, S., V.S. Shubha and P. Jidesh, 2017. Convergence of a Tikhonov gradient type-method for nonlinear ill-posed equations. Int. J. Applied Comput. Math., 3: 1205-1215.
    CrossRef  |  Direct Link  |  

  58. George, S. and M.T. Nair, 2017. A derivative-free iterative method for nonlinear ill-posed equations with monotone operators. J. Inverse Ill-Posed Problems, 25: 543-551.
    CrossRef  |  Direct Link  |  

  59. George, S. and M. Sabari, 2017. Error estimate for modified steepest descent method for nonlinear ill-posed problems under Holder-type source condition. Math. Inverse Probl., 4: 1-11.
    Direct Link  |  

  60. George, S. and M. Sabari, 2017. Convergence rate results for steepest descent type method for nonlinear ill-posed equations. Applied Math. Comput., 294: 169-179.
    CrossRef  |  Direct Link  |  

  61. Argyros, I.K., S.M. Sheth, R.M. Younis, A.A. Magrenan and S. George, 2017. Extending the mesh independence for solving nonlinear equations using restricted domains. Int. J. Applied Comput. Math., 3: 1035-1046.
    CrossRef  |  Direct Link  |  

  62. Argyros, I.K., S. Muruster and S. George, 2017. On the convergence of Stirling’s method for fixed points under not necessarily contractive hypotheses. Int. J. Applied Comput. Math., 3: 1071-1081.
    CrossRef  |  Direct Link  |  

  63. Argyros, I.K., S. George and S.M. Erappa, 2017. On the semilocal convergence of two step Newton-Tikhonov methods for ill-posed problems under weak conditions. Trans. Math. Programm. Applic., 5: 1-24.
    Direct Link  |  

  64. Argyros, I.K., S. George and S.M. Erappa, 2017. Inexact Newton's method to nonlinear functions with values in a cone using restricted convergence domains. Int. J. Applied Comput. Math., 3: 953-959.
    CrossRef  |  Direct Link  |  

  65. Argyros, I.K., S. George and S.M. Erappa, 2017. Expanding the applicability of the generalized Newton method for generalized equations. Commun. Optimiz. Theory, Vol. 2017. 10.23952/cot.2017.12.
    CrossRef  |  Direct Link  |  

  66. Argyros, I.K., S. George and S.M. Erappa, 2017. Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations. Rendiconti Circolo Matematico Palermo Series 2, 66: 303-323.
    CrossRef  |  Direct Link  |  

  67. Argyros, I.K., S. George and S.M. Erappa, 2017. Ball convergence for an eighth order efficient method under weak conditions in Banach spaces. SeMA J., 74: 513-521.
    CrossRef  |  Direct Link  |  

  68. Argyros, I.K., S. George and P. Jidesh, 2017. Iterative regularization for ill-posed operator equations in Hilbert scales. Nonlinear Stud., 24: 257-271.
    Direct Link  |  

  69. Argyros, I.K., P. Jidesh and S. George, 2017. On the local convergence of Newton-like methods with fourth and fifth order of convergence under hypotheses only on the first Frechet derivative. Novi Sad J. Math., 47: 1-15.
    Direct Link  |  

  70. Argyros, I.K., P. Jidesh and S. George, 2017. Improved robust semi-local convergence analysis of Newton's method for cone inclusion problem in Banach spaces under restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 421-432.
    Direct Link  |  

  71. Argyros, I.K., P. Jidesh and S. George, 2017. Ball convergence for second derivative free methods in banach space. Int. J. Applied Comput. Math., 3: 713-720.
    CrossRef  |  Direct Link  |  

  72. Argyros, I.K. and S. George, 2017. Unified local convergence for some high order methods with one parameter. Global J. Sci. Front. Res., 17: 51-58.
    Direct Link  |  

  73. Argyros, I.K. and S. George, 2017. On the convergence of Newton-like methods using restricted domains. Numer. Algorithms, 75: 553-567.
    CrossRef  |  Direct Link  |  

  74. Argyros, I.K. and S. George, 2017. On the convergence of Broyden's method with regularity continuous divided differences and restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2017. 10.23952/jnfa.2017.21.
    CrossRef  |  Direct Link  |  

  75. Argyros, I.K. and S. George, 2017. On Newton's method for subanalytic equations. J. Numer. Anal. Approximation Theory, 46: 25-37.
    Direct Link  |  

  76. Argyros, I.K. and S. George, 2017. Local results for an iterative method of convergence order six and efficiency index 1.8171. Novi Sad J. Math., 47: 19-29.
    Direct Link  |  

  77. Argyros, I.K. and S. George, 2017. Local convergence of some high order iterative methods based on the decomposition technique using only the first derivative. Surv. Math. Applic., 12: 51-63.
    Direct Link  |  

  78. Argyros, I.K. and S. George, 2017. Local convergence of deformed Euler-Halley-type methods in Banach space under weak conditions. Asian-Eur. J. Math., Vol. 10, No. 2. 10.1142/S1793557117500863.
    CrossRef  |  Direct Link  |  

  79. Argyros, I.K. and S. George, 2017. Local convergence of a two-step Newton-Secant method for equations with solutions of multiplicity greater than one. Pan-Am. Math. J., 27: 15-28.

  80. Argyros, I.K. and S. George, 2017. Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative. Ann. Univ. Paedagog. Crac. Stud. Math., 16: 41-50.
    CrossRef  |  Direct Link  |  

  81. Argyros, I.K. and S. George, 2017. Local convergence of a fifth convergence order method in Banach space. Arab J. Math. Sci., 23: 205-214.
    CrossRef  |  Direct Link  |  

  82. Argyros, I.K. and S. George, 2017. Local convergence of a fast Steffensen-type method on Banach space under weak conditions. Int. J. Comput. Sci. Math., 8: 495-505.
    CrossRef  |  Direct Link  |  

  83. Argyros, I.K. and S. George, 2017. Local convergence of Jarratt-type methods with less computation of inversion under weak conditions. Math. Modell. Anal., 22: 228-236.
    CrossRef  |  Direct Link  |  

  84. Argyros, I.K. and S. George, 2017. Local convergence for an almost sixth order method for solving equations under weak conditions. SeMA J., 75: 163-171.
    CrossRef  |  Direct Link  |  

  85. Argyros, I.K. and S. George, 2017. Local convergence for a frozen family of Steffensen-like methods under weak conditions. Res. Applied Math., Vol. 1. 10.11131/2017/101259.
    CrossRef  |  Direct Link  |  

  86. Argyros, I.K. and S. George, 2017. Improved convergence conditions of a Lavrentiev-type method for nonlinear ill-posed equations by using restricted convergence domains. Ann. Univ. Sci. Budapest Sect. Comput., 46: 355-371.
    Direct Link  |  

  87. Argyros, I.K. and S. George, 2017. Improved convergence analysis for the Kurchatov method. Nonlinear Funct. Anal. Applic., 22: 41-58.
    Direct Link  |  

  88. Argyros, I.K. and S. George, 2017. Improved convergence analysis for King-Werner-like methods free of derivatives using restricted convergence. Commun. Optimiz. Theory, Vol. 2017. 10.23952/cot.2017.1.
    CrossRef  |  Direct Link  |  

  89. Argyros, I.K. and S. George, 2017. Higher order derivative-free iterative methods with and without memory in Banach space under weak conditions. Bangmod Int. J. Math. Comput. Sci., 3: 25-34.

  90. Argyros, I.K. and S. George, 2017. Extending the local convergence of some iterative methods based on quadrature formulas on Banach space under weak conditions. Trans. Math. Programm. Applic., 5: 51-59.

  91. Argyros, I.K. and S. George, 2017. Extending the convergence domain of Newton's method for generalized equations. Serdica Math. J., 43: 65-78.

  92. Argyros, I.K. and S. George, 2017. Extending the applicability of Newton's method using Wang's-Smale's α-theory. Carpathian J. Math., 33: 27-33.
    Direct Link  |  

  93. Argyros, I.K. and S. George, 2017. Extended and unified local convergence for Newton-Kantorovich method under w-conditions with applications. WSEAS Trans. Math., 16: 248-256.
    Direct Link  |  

  94. Argyros, I.K. and S. George, 2017. Expanding the applicability of the Kantorovich's theorem for solving generalized equations using Newton's method. Int. J. Applied Comput. Math., 3: 3295-3304.
    CrossRef  |  Direct Link  |  

  95. Argyros, I.K. and S. George, 2017. Expanding the applicability of the Gauss-Newton method for convex optimization under restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 197-207.
    Direct Link  |  

  96. Argyros, I.K. and S. George, 2017. Expanding the applicability of inexact Newton methods using restricted convergence domains. Applic. Math., 44: 123-133.
    CrossRef  |  Direct Link  |  

  97. Argyros, I.K. and S. George, 2017. Expanding the applicability of Steffensen's method using restricted convergence domains. Adv. Applic. Math. Sci., 16: 133-150.

  98. Argyros, I.K. and S. George, 2017. Ball convergence of the Laguerre-like method for multiple zeros. Int. J. Adv. Math., 6: 114-122.
    Direct Link  |  

  99. Argyros, I.K. and S. George, 2017. Ball convergence of Newton's method for generalized equations using restricted convergence domains and majorant conditions. Nonlinear Funct. Anal. Applic., 22: 485-494.
    Direct Link  |  

  100. Argyros, I.K. and S. George, 2017. Ball convergence for an inverse free Jarratt-type method under holder conditions. Int. J. Applied Comput. Math., 3: 157-164.
    CrossRef  |  Direct Link  |  

  101. Argyros, I.K. and S. George, 2017. Ball Convergence for two-parameter Chebyshev-Halley-like methods in Banach space using hypotheses only on the first derivative. Commun. Applied Nonlinear Anal., 24: 72-81.

  102. Argyros, I.K. and S. George, 2017. A study on the local convergence of a Steffensen-King-type iterative method. Nonlinear Stud., 24: 285-295.
    Direct Link  |  

  103. Argyros, I.K. and S. George, 2017. A convergence of a Steffensen-like method for solving nonlinear equations in a Banach space. Creat. Math. Inform., 26: 125-136.

  104. Argyris, I.K. and S. George, 2017. Ball convergence theorem for a Steffensen-type third-order method. Rev. Colomb. Mat., 51: 1-14.
    CrossRef  |  Direct Link  |  

  105. Anastassiou, G.A., I.K. Argyros and S. George, 2017. Proximal methods with invexity and fractional calculus. Pan-Am. Math. J., 27: 84-89.

  106. Shubha, V.S., S. George, P. Jidesh and M.E. Shobha, 2016. Finite dimensional realization of a quadratic convergence yielding iterative regularization method for ill-posed equations with monotone operators. Applied Math. Comput., 273: 1041-1050.
    CrossRef  |  Direct Link  |  

  107. Shubha, V.S., S. George and P. Jidesh, 2016. Finite dimensional realization of a Tikhonov gradient type-method under weak conditions. Rendiconti Circolo Matemat. Palermo Series, 2: 395-410.
    CrossRef  |  Direct Link  |  

  108. Argyros, I.K., Y.J. Cho and S. George, 2016. Local convergence for some third-order iterative methods under weak conditions. J. Korean Math. Soc., 53: 781-793.

  109. Argyros, I.K., S.M. Sheth, R.M. Younis and S. George, 2016. The asymptotic mesh independence principle of Newton's method under weaker conditions. Pan-Am. Math. J., 26: 44-56.

  110. Argyros, I.K., S.K. Khattri and S. George, 2016. On the local convergence of a secant like method in a Banach space under weak conditions. Pan-Am. Math. J., 26: 89-99.

  111. Argyros, I.K., S. George and S.M. Erappa, 2016. Local convergence of sixth-order newton-like methods based on stolarsky and gini means. Asian J. Math. Comput. Res., 8: 306-316.
    Direct Link  |  

  112. Argyros, I.K., S. George and M.E. Shobha, 2016. Discretized Newton-Tikhonov method for ill-posed hammerstein type equations. Commun. Applied Nonlinear Anal., 23: 34-55.
    Direct Link  |  

  113. Argyros, I.K., P. Jidesh and S. George, 2016. Ball convergence for a third order method based on Newton's method and the Adomian decomposition method. Int. J. Converg. Comput., 2: 300-307.
    CrossRef  |  Direct Link  |  

  114. Argyros, I.K. and S. George, 2016. Unified convergence domains of Newton-like methods for solving operator equations. Applied Math. Comput., 286: 106-114.
    CrossRef  |  Direct Link  |  

  115. Argyros, I.K. and S. George, 2016. On the convergence of inexact Gauss-Newton method for solving singular equations. J. Nonlinear Funct. Anal., Vol. 22. .
    Direct Link  |  

  116. Argyros, I.K. and S. George, 2016. On a result by Dennis and Schnabel for Newton's method: Further improvements. Applied Math. Lett., 55: 49-53.
    CrossRef  |  Direct Link  |  

  117. Argyros, I.K. and S. George, 2016. Local convergence of some fifth and sixth order iterative methods. Nonlinear Funct. Anal. Applic., 21: 413-424.
    Direct Link  |  

  118. Argyros, I.K. and S. George, 2016. Local convergence of inexact Gauss-Newton-like method for least square problems under weak Lipschitz condition. Commun. Applied Nonlinear Anal., 23: 56-70.

  119. Argyros, I.K. and S. George, 2016. Local convergence of deformed Jarratt-type methods in Banach space without inverses. Asian-Eur. J. Math., Vol. 9. 10.1142/S1793557116500157.
    CrossRef  |  Direct Link  |  

  120. Argyros, I.K. and S. George, 2016. Local convergence for inverse free Jarratt-type method in Banach space under Holder conditions. Commun. Applied Nonlinear Anal., 23: 72-81.

  121. Argyros, I.K. and S. George, 2016. Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weak conditions. Int. J. Applied Comput. Math., 2: 565-574.
    CrossRef  |  Direct Link  |  

  122. Argyros, I.K. and S. George, 2016. Local convergence for a family of cubically convergent methods in Banach space. Nonlinear Funct. Anal. Applic., 21: 263-272.

  123. Argyros, I.K. and S. George, 2016. Local convergence for a family of Chebyshev-Halley-like methods under relaxed conditions in Banach space. Trans. Math. Program. Applic., 4: 1-12.

  124. Argyros, I.K. and S. George, 2016. Local convergence for a derivative free method of order three under weak conditions. Int. J. Converg. Comput., 2: 41-53.
    CrossRef  |  Direct Link  |  

  125. Argyros, I.K. and S. George, 2016. Local convergence for Jarratt-like iterative methods in Banach space under weak conditions. J. Nonlinear Anal. Optimiz., 7: 17-25.
    Direct Link  |  

  126. Argyros, I.K. and S. George, 2016. Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  

  127. Argyros, I.K. and S. George, 2016. Improvements of the local convergence of Newton's method with fourth-order convergence. Asian J. Math. Comput. Res., 7: 9-17.
    Direct Link  |  

  128. Argyros, I.K. and S. George, 2016. Improved local convergence for Euler-Halley-like methods with a parameter. Rend. Circolo Matemat. Palermo, 65: 87-96.
    CrossRef  |  Direct Link  |  

  129. Argyros, I.K. and S. George, 2016. Improved convergence for King-Werner-type derivative free methods. J. Nonlinear Anal. Optimiz., 7: 97-103.
    Direct Link  |  

  130. Argyros, I.K. and S. George, 2016. Extending the applicability of a new Newton-like method for nonlinear equations. Commun. Optimiz. Theory, Vol. 2016. .
    Direct Link  |  

  131. Argyros, I.K. and S. George, 2016. Extending the applicability of Newton-secant methods for functions with values in a cone. Serdica Math. J., 42: 287-300.

  132. Argyros, I.K. and S. George, 2016. Extending the applicability of Newton's method for sections on Riemannian manifolds using restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  

  133. Argyros, I.K. and S. George, 2016. Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains. J. Nonlinear Funct. Anal., Vol. 2016. .
    Direct Link  |  

  134. Argyros, I.K. and S. George, 2016. Extending the applicability of Ecient Steensen-type algorithms for solving nonlinear equations. Adv. Applic. Math. Sci., 15: 13-23.

  135. Argyros, I.K. and S. George, 2016. Extended local analysis of inexact gauss-newton-like method for least square problems using restricted convergence domains. West Univ. Timisoara-Mathemat. Comput. Sci., 54: 17-33.
    Direct Link  |  

  136. Argyros, I.K. and S. George, 2016. Expanding the applicability of the shadowing lemma for operators with chaotic behavior using restricted convergence domains. Nonlinear Funct. Anal. Applic., 21: 591-596.
    Direct Link  |  

  137. Argyros, I.K. and S. George, 2016. Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations. J. Numer. Anal. Approx. Theory, 45: 3-13.

  138. Argyros, I.K. and S. George, 2016. Convergence analysis of a three step Newton-like method for nonlinear equations in Banach space under weak conditions. Ann. West Univ. Timisoara-Math. Comput. Sci., 54: 37-46.
    CrossRef  |  Direct Link  |  

  139. Argyros, I.K. and S. George, 2016. Ball convergence theorems for Maheshwari-type eighth-order methods under weak conditions. Sao Paulo J. Math. Sci., 10: 91-103.
    CrossRef  |  Direct Link  |  

  140. Argyros, I.K. and S. George, 2016. Ball convergence results for a method with memory of efficiency index 1.8392 using only functional values. J. Nonlinear Anal. Optimiz., 7: 91-96.
    Direct Link  |  

  141. Argyros, I.K. and S. George, 2016. Ball convergence of some fourth and sixth-order iterative methods. Asian-Eur. J. Math., Vol. 9. 10.1142/S1793557116500340.
    CrossRef  |  Direct Link  |  

  142. Argyros, I.K. and S. George, 2016. Ball convergence of an iterative method for nonlinear equations based on the decomposition technique under weak conditions. Ann. Univ. Sci. Budapest. Sect. Comput., 45: 291-301.
    Direct Link  |  

  143. Argyros, I.K. and S. George, 2016. Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions. Calcolo, 53: 585-595.
    CrossRef  |  Direct Link  |  

  144. Argyros, I.K. and S. George, 2016. Ball convergence of a novel Newton-Traub composition for solving equations. Cogent Math. Stat., Vol. 3. 10.1080/23311835.2016.1155333.
    CrossRef  |  Direct Link  |  

  145. Argyros, I.K. and S. George, 2016. Ball convergence for a novel-fourth order method for solving systems of equations. AJOMCOR, 11: 147-154.

  146. Argyros, I.K. and S. George, 2016. Ball convergence for a novel sixth order iterative method under hypothesis only on the first derivative. Nonlinear Studies, 23: 263-271.
    Direct Link  |  

  147. Argyros, I.K. and S. George, 2016. Ball convergence for a computationally efficient fifth-order method for solving equations in Banach space under weak conditions. Bangmod Int. J. Math. Comput. Sci., 2: 118-126.
    Direct Link  |  

  148. Argyros, I., S. George and S. Erappa, 2016. Local convergence for a family of iterative methods based on decomposition techniques. Applic. Math., 1: 133-143.
    CrossRef  |  Direct Link  |  

  149. Subha, V.S., S. George and P. Jidesh, 2015. A derivative free iterative method for the implementation of Lavrentiev regularization method for ill-posed equations. Numer. Algor., 68: 289-304.
    CrossRef  |  Direct Link  |  

  150. Jidesh, P., V.S. Shubha and S. George, 2015. A quadratic convergence yielding iterative method for the implementation of Lavrentiev regularization method for ill-posed equations. Applied Math. Comput., 254: 148-156.
    CrossRef  |  Direct Link  |  

  151. George, S. and I.K. Argyros, 2015. Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Non. Sc. Appli., 8: 246-254.
    Direct Link  |  

  152. George, S. and I.K. Argyros, 2015. A unified local convergence for Jarratt-type methods in Banach space under weak conditions. Thai J. Math., 13: 165-176.

  153. Argyros, I.K., S. George and A.A. Magrenan, 2015. Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order. J. Comput. Applied Math., 282: 215-224.
    CrossRef  |  Direct Link  |  

  154. Argyros, I.K., S. George and A.A. Magrenan, 2015. Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in Banach spaces. J. Korean Math. Soc., 52: 23-41.

  155. Argyros, I.K., P. Jidesh and S. George, 2015. Local convergance of super-halley type methods with fourth-order of convergance under week conditions. EPAM., 2: 1-11.

  156. Argyros, I.K., P. Jidesh and S. George, 2015. An improved semilocal convergence analysis for a three point method of order 1.839 in Banach space. Adv. Nonlinear Variat. Inequal., 18: 23-32.

  157. Argyros, I.K. and S.George, 2015. Local convergence of optimal fourth order methods without memory under hypotheses only up to the first derivatives. Trans. Math. Program. Applic 3: 1-12.

  158. Argyros, I.K. and S. George, 2015. The convergence ball of inexact newton-like method in banach space under weak lipshitz condition. Convergence, 28: 1-12.

  159. Argyros, I.K. and S. George, 2015. On the local convergence of a Sharma-type optimal eighth-order method. EPAM., 1: 63-78.

  160. Argyros, I.K. and S. George, 2015. On a sixth-order Jarratt-type method in Banach spaces. Asian-Eur. J. Math., Vol. 8. 10.1142/S1793557115500655.
    CrossRef  |  Direct Link  |  

  161. Argyros, I.K. and S. George, 2015. On a local characterization of some newton-like methods of R-order at least three under weak conditions in banach spaces. J. Chungcheong Math. Soc., 28: 513-523.
    Direct Link  |  

  162. Argyros, I.K. and S. George, 2015. Local convergence of modified Halley-like methods with less computation of inversion. Novi Sad J. Math., 45: 47-58.

  163. Argyros, I.K. and S. George, 2015. Local convergence of a uniparametric Halley-type method in Banach space free of second derivative. ANVI., 18: 48-57.

  164. Argyros, I.K. and S. George, 2015. Local convergence of a multi-point Jarratt-type method in Banach space under weak conditions. J. Nonlinear Anal. Optimiz., 6: 43-52.

  165. Argyros, I.K. and S. George, 2015. Local convergence for deformed Chebyshev-type method in Banach space under weak conditions. Cogent Math., Vol. 2. 10.1080/23311835.2015.1036958.
    CrossRef  |  Direct Link  |  

  166. Argyros, I.K. and S. George, 2015. Local convergence for a regula falsi-type method under weak convergence. J. Applied Computat. Math., Vol. 4. 10.4172/2168-9679.1000217.
    CrossRef  |  

  167. Argyros, I.K. and S. George, 2015. Iterative regularization methods for nonlin-ear Ill-posed operator equations with M-accretive mappings in banach spaces. Acta Math. Scind., 35: 1318-1324.

  168. Argyros, I.K. and S. George, 2015. Expanding the convergence domain of newton-like methods and applications in banach space. J. Math., Vol. 47. .
    Direct Link  |  

  169. Argyros, I.K. and S. George, 2015. Expanding the applicability of ste ensen's method for nding xed point of operators in Banach space. Serdica Math. J., 41: 159-184.

  170. Argyros, I.K. and S. George, 2015. Enlarging the convergence ball of the method of parabola for finding zero of derivatives. Applied Math. Comput., 256: 68-74.

  171. Argyros, I.K. and S. George, 2015. Ball convergence theorems for uni ed three step Newton-like methods of high convergence order. Nonlinear Stud., 22: 327-339.

  172. Argyros, I.K. and S. George, 2015. Ball convergence theorems for for King's fourth-order iterative methods under weak conditions. Nonlinear Funct. Anal. Applic., 20: 419-428.

  173. Argyros, I.K. and S. George, 2015. Ball convergence theorems for eighth-order variants of Newton's method under weak conditions. Arabian J. Math., 4: 81-90.
    CrossRef  |  Direct Link  |  

  174. Argyros, I.K. and S. George, 2015. Ball convergence theorem for Hansen-Patrick-type methods with third and fourth order of convergence under weak conditions. EPAM., 1: 1-16.

  175. Argyros, I.K. and S. George, 2015. Ball convergence for variants of Jarratt's method. Bangmod Int. J. Math. Comput. Sci., 1: 33-39.

  176. Argyros, I.K. and S. George, 2015. Ball convergence for some ecient iterative methods. EPAM., 1: 47-62.

  177. Argyros, I.K. and S. George, 2015. Ball convergence for higher order methods under weak conditions. J. Math. Study, 48: 362-3748.

  178. Argyros, I.K. and S. George, 2015. Ball convergence for a ninth order Newton-type method from quadrature and adomian formulae in Banach space. NFAA., 20: 595-608.

  179. Argyros, I.K. and S. George, 2015. Ball convergence for a Newton-steensen-type third-order method. Adv. Nonlinear Variat. Inequal., 18: 34-45.

  180. Argyros, I.K. and S. George, 2015. Ball convergence for Traub-Steffensen like methods in Banach space. Ann. W. Univ. Timisoara-Mathematics Comput. Sci., 53: 3-16.
    Direct Link  |  

  181. Argyros, I.K. and S. George, 2015. Ball convergence for Stevensen-type fourth-order methods. Int. J. Artif. Intelli. Interact. Multimedia, 3: 37-42.

  182. Argyros, I.K. and S. George, 2015. Ball convergence comparison between three iterative methods in Banach space under hypothese only on the first derivative. Applied Math. Comput., 266: 1031-1037.
    CrossRef  |  Direct Link  |  

  183. Argyros, I.K. and S. George, 2015. Ball comparison for variants of Chebyshev's method with third or fourth order of convergence. Bangmod Int.J. Math. Comput. Sci., 1: 233-243.
    Direct Link  |  

  184. Argyros, I.K. and S. George, 2015. A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions. Studia Univ. Babes-Bolyai, Math., 60: 463-470.
    Direct Link  |  

  185. Argyros, I.K. and S. George, 2015. A ball comparison between three cubically convergent iterative methods. Trans. Math. Program. Applic., 3: 24-34.

  186. Argyros, I.K. and D. Gonzalez, 2015. Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under majorant and center-majorant condition. SeMA J., 69: 37-51.
    CrossRef  |  Direct Link  |  

  187. Argyros, I.K. and S. George, 2015. Ball comparison between two optimal eight-order methods under weak conditions. SeMA J., 72: 1-11.
    CrossRef  |  Direct Link  |  

  188. Argyros, I. and S. George, 2015. Local convergence for a multi-point family of super-Halley methods in a Banach space under weak conditions. Applic. Math., 2: 193-203.
    CrossRef  |  Direct Link  |  

  189. Argyros, I. and S. George, 2015. Improved local convergence analysis of inexact Newton-like methods under the majorant condition. Applic. Math., 4: 343-357.

  190. Vasin, V. and S. George, 2014. Expanding the applicacability of Tikhonov's regularization and iterative approximation for ill-posed problems. J. Inverse Ill-Posed Prob., 22: 593-607.
    CrossRef  |  Direct Link  |  

  191. Vasin, V. and S. George, 2014. An analysis of lavrentiev regularization method and Newton type process for nonlinear illposed problems. Appl. Math. Comput., 230: 406-413.
    CrossRef  |  Direct Link  |  

  192. Shobha, M.E., S. George and M. Kunhanan-dan, 2014. A two step Newton type iteration for ill-posed Hammerstein type operator equations in Hilbert scales. J. Intgr. Equations Appl., 26: 91-116.
    CrossRef  |  Direct Link  |  

  193. Shobha, M.E., I.K. Argyros and S. George, 2014. Newton-type it-erative methods for nonlinear ill-posed Hammerstein-type equations. Appl. Math., 41: 107-129.
    CrossRef  |  Direct Link  |  

  194. Shobha, M.E. and S. George, 2014. Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. J. Math., 2014: 1-9.
    CrossRef  |  Direct Link  |  

  195. George, S. and M.E. Shobha, 2014. Newton type iteration for Tikhonov reg-ularization of non-linear ill-posed Hammerstein type equations. J. Appl. Math. Comput., 44: 69-82.
    Direct Link  |  

  196. George, S. and I.K. Argyros, 2014. On the semilocal convergence of modied Newton-Tikhonov regularization method for nonlinear ill-posed problems. Nonlinear Funct. Anal. Appl., 19: 99-111.

  197. George, S. and I.K. Argyros, 2014. On a deformed Newtons method with third order of convergence under the condition. Adv. Appl. Math. Sci., 13: 1-18.

  198. George, S. and I.K. Argyros, 2014. Expanding the applicability of the Gauss-Newton method for convex optimization under a regularity condition. CANA, 21: 29-44.

  199. Argyros, I.K., Y.J. Cho and S. Georeg, 2014. On the terra incognita for the NewtonKantrovich method with applications. J. Korean Math. Soc., 51: 251-266.
    Direct Link  |  

  200. Argyros, I.K., S. George and P. Jidesh, 2014. Inverse free iterative methods for nonlinear ill-posed operator equations. Int. J. Math. Math. Sci., 2014: 1-8.
    CrossRef  |  Direct Link  |  

  201. Argyros, I.K., S. George and M.E. Shobha, 2014. Weak convergence of iterated lavrentiev regularization for nonlinear Ill-posed prob-lems. Trans. Math. Program. Applic., 2: 1-16.

  202. Argyros, I.K., S. George and M. Kunhanandhan, 2014. An iterative regularization methods for ill-posed Hammerstein type operator equations in Hilbert scale. Stud. UBB Math., 59: 247-262.
    Direct Link  |  

  203. Argyros, I.K., P. Jidesh and S. George, 2014. Ball convergence for fourteenth order iterative methods under conditions only on the rst derivative. Trans. Math. Program. Applic., 2: 1-12.

  204. Argyros, I.K., M.E. Shobha and S. George, 2014. Expanding the applicability of a two step newton-type pro-jection method for ill-posed problems. Funct. Approx. Comment. Math., 51: 141-166.
    Direct Link  |  

  205. Argyros, I.K. and S. George, 2014. Unified ball convergence for two-step iterative methods in Banach space. Trans. Math. Program. Applic., 2: 26-36.

  206. Argyros, I.K. and S. George, 2014. On the semilocal convergence of Newton's method for sections on Riemannian manifolds. Asian-Eur. J. Math., 07: 1-17.
    CrossRef  |  Direct Link  |  

  207. Argyros, I.K. and S. George, 2014. On the convergence of the kurchatov method under weak condition. Trans. Math. Pro-gramming Appl., 2: 1-12.

  208. Argyros, I.K. and S. George, 2014. On extended convergence do-mains for the Newton-kantorovich method Math. Tome, 56: 3-13.
    Direct Link  |  

  209. Argyros, I.K. and S. George, 2014. Local convergence of two competing third order methods in banach space. Appl. Math., 41: 341-350.
    CrossRef  |  Direct Link  |  

  210. Argyros, I.K. and S. George, 2014. Local convergence of a multi-point-parameter Newton-like methods in Banach space. Nonlinear Funct. Anal. Appl., 19: 381-392.
    Direct Link  |  

  211. Argyros, I.K. and S. George, 2014. Expanding the applicability of Tikhonov's regularization for nonlinear ill-posed problems. Math. Inverse Prob., 1: 86-100.

  212. Argyros, I.K. and S. George, 2014. Expanding the applicability of Newton-Tikhonov method for ill-posed equations. Rev. Anal. Numér. Théor. Approx., 433: 141-158.
    Direct Link  |  

  213. Argyros, I.K. and S. George, 2014. Expanding the applicability of Lavrentiev regularization methods for ill-posed equations under general source condition. Nonlinear Funct. Anal. Appl., 19: 177-192.

  214. Argyros, I.K. and S. George, 2014. Aunied local convergence for three-step iterative methods with optimal eight order of convergence under weak conditions Trans. Math. Program. Applic., 2: 13-25.

  215. Argyros, I.K. and S. George, 2014. An analysis of lavrentiev regu-larization methods and newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations. Adv. Nonlinear Varia-tional Inequalities, 17: 26-42.

  216. Argyros, I.K. and S. George, 2014. Regularization methods for ill-posed problems with monotone nonlinear part. PUJM, 46: 25-38.
    Direct Link  |  

  217. Shobha, M.E. and S. George, 2013. Projection method for Newton-Tikhonov regularization for non-linear ill-posed Hammerstein type operator equations. Int. J. Pure Appl. Math., 83: 643-650.
    CrossRef  |  Direct Link  |  

  218. Shobha, M.E. and S. George, 2013. On improving the semilocal convergence of newton-type iterative method for Ill-posed ham-merstein type operator equations. IAENG, Int. J. Appl. Math., 43: 64-70.
    Direct Link  |  

  219. George, S., 2013. Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems. J. Math. 10.1155/2013/439316.
    CrossRef  |  Direct Link  |  

  220. George, S. and I.K. Argyros, 2013. Tikhonovs regularization and a cubic convergent iterative approximation for nonlinear ill-posed problems. Adv. Appl. Math. Sci., 12: 435-486.

  221. Georeg, S., S. Pareth and M. Kunhanandan, 2013. Newton lavrentiev regularization for ill-posed operator equations in Hilbert scales. Applied Math. Comput., 219: 11191-11197.
    CrossRef  |  Direct Link  |  

  222. Georeg, S. and S. Pareth, 2013. An application of Newton-type iterative method for the approximate implementation of Laventiev regularization. J. Appl. Anal., 19: 181-196.
    CrossRef  |  Direct Link  |  

  223. Argyros, I.K., Y.J. Cho and S. Georeg, 2013. Expanding the applicability of lavrentiev regularization methods for ill-posed problems. Boundary Value Prob., 2013: 114-114.
    CrossRef  |  Direct Link  |  

  224. Argyros, I.K. and S. Hilout, 2013. Extending the applicability of the mesh independence principle for solving nonlinear equations. Trans. Math. Program. Applied, 1: 15-26.

  225. Argyros, I.K. and S. George, 2013. On the semilocal convergence of a two-step Newton-like projection method for ill-posed equations. Appl. Math., 40: 367-382.
    CrossRef  |  Direct Link  |  

  226. Argyros, I.K. and S. George, 2013. Modification of the kantorovich-type conditions for newton's method involving twice frechet differentiable operators. Asian-Eur. J. Mathem., Vol. 6. 10.1142/S1793557113500265.
    CrossRef  |  Direct Link  |  

  227. Argyros, I.K. and S. George, 2013. Improved local convergence of lavrentiev regularization for ill-posed equations. Trans. Math. Programming Appl., 1: 65-76.

  228. Argyros, I.K. and S. George, 2013. Extending the applicability of Newtons method on riemannian manifolds with values in a cone. Asian-Eur. J. Math., 6: 1-15.
    CrossRef  |  Direct Link  |  

  229. Argyros, I.K. and S. George, 2013. Expanding the applicability of a two step newton lavrentiev method for Ill-posed problems. J. Nonlinear Anal. Optim.: Theory Applic., 4: 1-15.
    Direct Link  |  

  230. Argyros, I.K. and S. George, 2013. Expanding the applicability of a sim-pli ed Newton-Tikhonov regularization method for ill-posed equations. Trans. Math. Programming Appl., 1: 75-85.

  231. Argyros, I.K. and S. George, 2013. Expanding the applicability of a newton-Lavrentiev regularization method for ill-posed problems. Math. Tome, 55: 103-111.
    Direct Link  |  

  232. Argyros, I.K. and S. George, 2013. Expanding the applicability of a Modified Gauss-Newton method for solving nonlinear ill-posed problems. Appl. Math. Comput., 219: 10518-10526.
    CrossRef  |  Direct Link  |  

  233. Argyros, I.K. and S. George, 2013. Chebyshev-kurchatov-type methods for solving equations with non-di erentiable operators. Nonlinear Funct. Anal. Appl., 18: 421-432.
    Direct Link  |  

  234. Argyros, I.K. and S. George, 2013. An extension of a theorem by B.T. polyak on gradient-type methods. Nonlinear Funct. Anal. Appl., 18: 411-420.

  235. Argyros, I.K. and H. Ren, 2013. Efficient steffensen-type algorithms for solving nonlinear equations. Int. J. Comput. Mathemat., 90: 691-704.
    CrossRef  |  Direct Link  |  

  236. Shobha, M.E. and S. George, 2012. Dynamical system method for ill-posed hammerstein type operator equations with monotone operators. Int. J. Pure Appl. Math., 81: 129-143.
    Direct Link  |  

  237. Jidesh, P. and S. George, 2012. Schock coupled fourth-order di usion for image enhancement. Comput. Electr. Eng., 38: 1262-1277.
    CrossRef  |  Direct Link  |  

  238. Jidesh, P. and S. George, 2012. Gauss curvature driven image inpainting for image reconstruction. J. Chin. Inst. Eng., 37: 122-133.
    CrossRef  |  Direct Link  |  

  239. Jidesh, P. and S. George, 2012. Fourth-order gauss curvature driven di usion for image denoising. Int. J. Comp. Elect. Eng., 4: 350-354.
    CrossRef  |  Direct Link  |  

  240. Jidesh, P. and S. George, 2012. A time-dependent switching anisotropic di usion model for denoising and deblurring images. J. Modern Optics, 59: 140-156.
    CrossRef  |  Direct Link  |  

  241. George, S. and S. Pareth, 2012. Two step newton method fornon-linear lavrentiev regularization. ISRN Applied Math., 2012: 1-22.
    CrossRef  |  Direct Link  |  

  242. George, S. and S. Pareth, 2012. An application of Newton type iterative method for Laverentiev regularization for ill-posed equations: Finite dimensional realization. IAENG, Int. J. Appl. Math., 42: 164-170.
    Direct Link  |  

  243. George, S. and M.E. Shobha, 2012. Two step newton-tikhonov method for hammerstein-type equations: Finite dimensional realization. ISRN Applied Math., 2012: 1-22.
    CrossRef  |  Direct Link  |  

  244. George, S. and A.I. Elmahdy, 2012. A quadratic convergence yielding iterative method for nonlinear ill-posed operator equations. Comput. Methods Appl. Math., 12: 32-45.
    Direct Link  |  

  245. Jidesh, P. and S. George, 2011. Fourth-order variational model with local-constraints for denoising images with textures. Int. J. Comput. Vision Rob., 2: 330-340.
    CrossRef  |  Direct Link  |  

  246. Jidesh, P. and S. George, 2011. Curvature driven diffusion coupled with shock for image enhancement/reconstruction. Int. J. Signal Imaging Syst. Eng., 4: 238-247.
    CrossRef  |  Direct Link  |  

  247. Jidesh, P. and S. George, 2011. Adaptive multi-model biometric fusion for digital watermarking. IJCSI., 8: 282-289.

  248. George, S. and P. Jidesh, 2011. Reconstruction of signals by standard Tikhonov method. Applied Math. Sci., 5: 2819-2829.
    Direct Link  |  

  249. George, S. and M.E. Shobha, 2011. A regularized dynamical system method for nonlinear ill-posed hammerstein type operator equations. J. Appl. Math. Bioinf., 1: 65-78.
    Direct Link  |  

  250. George, S., 2010. On convergence of regularized modified Newton's method for nonlinear ill-posed problems. J. Inverse Ill-Posed Prob., 18: 133-146.
    CrossRef  |  

  251. George, S. and M. Kunhanandan, 2010. Iterative regularization methods for ill-posed Hammerstein type operator equation with monotone nonlinear part. Int. J. Math. Anal., 4: 1673-1685.
    Direct Link  |  

  252. George, S. and A.I. Elmahdy, 2010. An iteratively regularized projection method with quadratic convergence for nonlinear ill-posed problems. Int. J. Contem. Math. Sci., 4: 2211-2228.
    CrossRef  |  Direct Link  |  

  253. George, S. and A.I. Elmahdy, 2010. An iteratively regularized projection method for nonlinear ill-posed problems. Int. J. Math. Anal., 5: 2547-2565.
    Direct Link  |  

  254. George, S. and A.I. Elmahdy, 2010. An analysis of Lavrentiev regularization for nonlinear ill-posed problems using an iterative regularization method. Int. J. Comput. Appl. Math., 5: 369-381.

  255. George, S. and M. Kunhanandan, 2009. An iterative regularization method for Ill-posed hammerstein type operator equations. J. Inverse Ill-Posed Prob., 17: 831-844.
    CrossRef  |  Direct Link  |  

  256. George, S., 2008. Monotone error rule for tikhonov regularization in hilbert scales. J. Anal., 16: 1-9.

  257. George, S. and M.T. Nair, 2008. A modified newton-lavrentiev regularization for nonlinear ill-posed hmmerstein operator equations. J. Complexity, 24: 228-240.
    CrossRef  |  Direct Link  |  

  258. George, S., 2006. Newton-tikhonov regularization of ill-posed hammerstein operator equation. J. Inverse Ill-Posed Prob., 14: 135-145.

  259. George, S., 2006. Newton-lavrentiev regularization of ill-posed hammerstein type operator equation. J. Inverse Ill-Posed Prob., 14: 573-582.
    CrossRef  |  Direct Link  |  

  260. George, S. and M.T. Nair, 2004. An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in hilbert scales: Finite dimensional realizations. Int. J. Math. Math. Sci., 37: 1973-1996.

  261. George, S. and M.T. Nair, 2003. An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in hilbert scales. Int. J. Math. Math. Sci., 2003: 2487-2499.
    CrossRef  |  Direct Link  |  

  262. George, S. and M.T. Nair, 1998. On a generalized arcangelis method for tikhonov regularization with inexact data. J. Numer. Funct. Anal. Optimiz., 19: 773-787.
    CrossRef  |  Direct Link  |  

  263. George, S. and M.T. Nair, 1997. Error bounds and parameter choice strategies for simplified regularization in Hilbert scales. Integr. Equations Operator Theory, 29: 231-242.
    Direct Link  |  

  264. George, S. and M.T. Nair, 1994. Parameter choice by discrepancy princi-pals for ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl., 83: 217-222.
    Direct Link  |  

  265. George, S. and M.T. Nair, 1994. A class of discrepancy principals for the simplified regularization. J. Aust. Math. Soc. Ser. B, 36: 242-248.
    CrossRef  |  Direct Link  |  

  266. George, S. and M.T. Nair, 1993. An apostoriori parameter choice for simplified regularization of ill-posed problems. Integr. Equations Operator Theory, 16: 392-399.
    Direct Link  |