Mr. Barenya Bikash Hazarika

Teaching Assistant
National Institute of Technology, Arunachal Pradesh, India


Highest Degree
Ph.D. Student in Computer Science & Engineering from National Institute of Technology, Arunachal Pradesh, India

Share this Profile

Area of Interest:

Computer Science and Engineering
Artificial Intelligence
Bioinformatics
Biomedical Signal Processing
Data Mining and Machine Learning

Selected Publications

  1. Hazarika, B.B., D. Gupta and N. Natarajan, 2022. Wavelet kernel least square twin support vector regression for wind speed prediction. Environ. Sci. Pollut. Res., 29: 86320-86336.
    CrossRef  |  Direct Link  |  

  2. Hazarika, B.B. and D. Gupta, 2022. Random vector functional link with ε-insensitive Huber loss function for biomedical data classification. Comput. Methods Programs Biomed., Vol. 215. 10.1016/j.cmpb.2022.106622.
    CrossRef  |  Direct Link  |  

  3. Hazarika, B.B. and D. Gupta, 2022. MODWT—random vector functional link for river-suspended sediment load prediction. Arabian J. Geosci., 10.1007/s12517-022-10150-1.
    CrossRef  |  Direct Link  |  

  4. Hazarika, B.B. and D. Gupta, 2022. Affinity based fuzzy kernel ridge regression classifier for binary class imbalance learning. Eng. Appl. Artif. Intell., Vol. 117. 10.1016/j.engappai.2022.105544.
    CrossRef  |  Direct Link  |  

  5. Hazarika, B.B. and D. Gupta, 2022. 1-Norm random vector functional link networks for classification problems. Complex Intell. Syst., 8: 3505-3521.
    CrossRef  |  Direct Link  |  

  6. Hazarika, B.B., D. Gupta and P. Borah, 2021. An intuitionistic fuzzy kernel ridge regression classifier for binary classification. Appl. Soft Comput., Vol. 112. 10.1016/j.asoc.2021.107816.
    CrossRef  |  Direct Link  |  

  7. Hazarika, B.B. and D. Gupta, 2021. Density Weighted Twin Support Vector Machines for Binary Class Imbalance Learning. Neural Process Lett., 54: 1091-1130.
    CrossRef  |  Direct Link  |  

  8. Gupta, D., B.B. Hazarika, M. Berlin, U.M. Sharma and K. Mishra, 2021. Artificial intelligence for suspended sediment load prediction: A review. Environ. Earth Sci., 10.1007/s12665-021-09625-3.
    CrossRef  |  Direct Link  |  

  9. Hazarika, B.B., D. Gupta and M. Berlin, 2020. Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction. Environ. Earth Sci., 10.1007/s12665-020-08949-w.
    CrossRef  |  Direct Link  |  

  10. Hazarika, B.B., D. Gupta and M. Berlin, 2020. A coiflet LDMR and coiflet OB-ELM for river suspended sediment load prediction. Int. J. Environ. Sci. Technol., 18: 2675-2692.
    CrossRef  |  Direct Link  |  

  11. Hazarika, B.B. and D. Gupta. 2020. Density-weighted support vector machines for binary class imbalance learning. Neural Comput. Applic., 33: 4243-4261.
    CrossRef  |  Direct Link  |  

  12. Gupta, D., B.B. Hazarika and M. Berlin, 2020. Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Comput. Applic., 32: 12971-12998.
    CrossRef  |  Direct Link  |