Dr. Emil Martin
My Social Links

Dr. Emil Martin

Associate Professor
University of Texas Medical School, USA


Highest Degree
Ph.D. in Internal Medicine from Russian Academy of Sciences, Russia

Share this Profile

Area of Interest:

Biomedical Sciences
100%
Internal Medicine
62%
Enzymology
90%
Cell Signaling
75%
Organic Chemistry
55%

Research Publications in Numbers

Books
0
Chapters
1
Articles
81
Abstracts
2

Selected Publications

  1. Proinsias, K.O., D.T. Gryko, Y. Hisaeda, E. Martin, J.L. Sessler and D. Gryko, 2013. Vitamin B12 derivatives as activators of soluble guanylyl cyclase. J. Med. Chem., 55: 8943-8947.
    CrossRef  |  
  2. Chrominski, M., L. Banach, M. Karczewski, I. Sharina, K.O. Proinsias, D. Gryko and E. Martin, 2013. Synthesis and evaluation of bifunctional sGC regulators: Optimization of a connecting linker. J. Med Chem., 56: 7260-7277.
    CrossRef  |  
  3. Chrominski, M., K.O. Proinsias, E. Martin and D. Gryko, 2013. Protoporphyrin IX/cobyrinate derived hybrids-novel activators of soluble guanylyl cyclase. Eur. J. Org. Chem., 2013: 1530-1537.
    CrossRef  |  
  4. Tsai, A.L., V. Berka, E. Martin and J.S. Olson, 2012. A sliding-scale rule for selectivity between NO, CO and O2 by heme protein sensors. Biochemistry, 51: 172-186.
    CrossRef  |  
  5. Tsai, A.L., J.S. Olson, V. Berka and E. Martin, 2012. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain and soluble guanylyl cyclase. Antiox. Redox Sign., 17: 1246-1263.
    CrossRef  |  
  6. Sharina, I.G., M. Sobolevsky, M.F. Doursout, D. Gryko and E. Martin, 2012. Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain. J. Pharm. Exp. Ther., 340: 723-732.
    CrossRef  |  
  7. Proinsias, K.O., M. Giedyk, I.G. Sharina, E. Martin and D. Gryko, 2012. Synthesis of new hydrophilic and hydrophobic cobinamides as no-independent sGC activators. Med. Chem. Lett., 3: 476-479.
    CrossRef  |  
  8. Martin, E., V. Berka, I.G. Sharina and A.L. Tsai, 2012. Mechanism of binding of NO to soluble guanylyl cyclase: Implication for the second NO binding to the heme proximal site. Biochemistry, 51: 2737-2746.
    CrossRef  |  
  9. Cote, G.J., W. Zhu, A. Thomas, E.S. Martin, F. Murad and I.G. Sharina, 2012. Hydrogen peroxide alters splicing of soluble guanylyl cyclase and selectively modulates expression of splicing regulators in human cancer cells. PLoS One, Vol. 7. 10.1371/journal.pone.0041099.
    CrossRef  |  
  10. Coletta, C., A. Papapetropoulos, K. Erdelyi, G. Olah and K. Modis et al., 2012. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA, 109: 9161-9166.
    CrossRef  |  Direct Link  |  
  11. Chauhan, S., F. Jelen, I. Sharina and E. Martin, 2012. The G-protein regulator LGN modulates the activity of the NO receptor soluble guanylate cyclase. Biochem. J., 446: 445-453.
    CrossRef  |  
  12. Zhu, H., J.T. Li, F. Zheng, E. Martin and A. Kots et al., 2011. Restoring sGC expression and function blocks the aggressive course of glioma. Mol. Pharm., 80: 1076-1084.
    CrossRef  |  
  13. Tsai, A.L., V. Berka, I. Sharina and E. Martin, 2011. Dynamic ligand exchange in soluble guanylyl cyclase (sGC): implications for sGC regulation and desensitization. J. Biol. Chem., 286: 43182-43192.
    CrossRef  |  Direct Link  |  
  14. Sharina, I.G., G.J. Cote, E. Martin, M.F. Doursout and F. Murad, 2011. RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase. Nitric Oxide, 25: 265-274.
    CrossRef  |  
  15. Sharin, V.G., K. Mujoo, A.Y. Kots, E. Martin, F. Murad and I.G. Sharina, 2011. Nitric oxide receptor soluble guanylyl cyclase undergoes splicing regulation in differentiating human embryonic cells. Stem Cells Dec., 20: 1287-1293.
    CrossRef  |  
  16. Mujoo, K., V.G. Sharin, E. Martin, B.K. Choi and C. Sloan et al., 2010. Role of soluble guanylyl cyclase-cyclic GMP signaling in tumor cell proliferation. Nitric Oxide, 22: 43-50.
    CrossRef  |  
  17. Doursout, M.F., E. Martin, I. Sharina, K. Bian and F. Murad, 2010. Hypertension: Basics concepts and the evolving role of novel treatments. Curr. Hypertens. Rev., 6: 232-237.
    CrossRef  |  
  18. Bui-Nguyen, T.M., S.B. Pakala, R.D. Sirigiri, E. Martin, F. Murad and R. Kumar, 2010. Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. J. Biol. Chem., 285: 6980-6986.
    CrossRef  |  
  19. Sanghani, P.C., W.I. Davis, S.L. Fears, S.L. Green and L. Zhai et al., 2009. Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. J. Biol. Chem., 84: 24354-24362.
    CrossRef  |  
  20. Kots, A.Y., E. Martin, I.G. Sharina and F. Murad, 2009. A short history of cGMP, guanylyl cyclases and cGMP-dependent protein kinases. Handb. Exp. Pharmacol., 191: 1-14.
    CrossRef  |  
  21. Sharina, I.G., F. Jelen, E.P. Bogatenkova, A. Thomas, E. Martin and F. Murad, 2008. α1 soluble guanylyl cyclase (sGC) splice forms as potential regulators of human sGC activity. J. Biol Chem., 83: 15104-15113.
    CrossRef  |  
  22. Rayala, S.K., E. Martin, I.G. Sharina, P.R. Molli and X. Wang et al., 2007. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proc. Nat. Acad. Sci. USA., 104: 19470-19475.
    PubMed  |  
  23. Martin, E., K. Bian and F. Murad, 2007. Nitric Oxide Signaling in Cellular Processes. In: The Oxidative Stress: Clinical and Biomedical Implications, Matata, B.M. and M.M. Elahi (Eds.). Nova Science, Hauppauge, New York.
  24. Martin, E., V. Berka, E. Bogatenkova, F. Murad and A.L. Tsai, 2006. Ligand selectivity of soluble guanylyl cyclase: Effect of the hydrogen-bonding tyrosine in the distal heme pocket on binding of oxygen, nitric oxide and carbon monoxide. J. Biol. Chem., 281: 27836-27845.
    Direct Link  |  
  25. Rossini, L., E. Martin and M. Zhong, 2005. Nitration of inducible nitric oxide synthase tyrosine residues in RAW 264.7 macrophages. Pharmacology, 2: 1-23.
    Direct Link  |  
  26. Martin, E., V. Berka, A.L. Tsai and F. Murad, 2005. Soluble guanylyl cyclase: The nitric oxide receptor. Methods Enzymol., 396: 478-492.
    CrossRef  |  
  27. Martin, E., K. Czarnecki, V. Jayaraman, F. Murad and J. Kincaid, 2005. Resonance raman and infrared spectroscopic studies of high-output forms of human soluble guanylyl cyclase. J. Am. Chem. Soc., 127: 4625-4631.
    Direct Link  |  
  28. Martin, E., I. Sharina, A. Seminara, J. Krumenacker and F. Murad, 2005. NO Cell Signaling Mediated by cGMP. In: Nitric Oxide, Cell Signaling and Gene Expression, Cadenas, E. and S. Lamas (Eds.). Marcel Dekker, New York.
  29. Ruiz-Stewart, I., S.R., Tiyyagura, J.E. Lin, S. Kazerounian and G.M. Pitari et al., 2004. Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc. Natl. Acad. Sci. USA, 101: 37-42.
    CrossRef  |  
  30. Hanafy, K., E. Martin and F. Murad, 2004. CCη, A novel soluble guanylyl cyclase-interacting protein. J. Biol. Chem., 279: 46946-46953.
    CrossRef  |  
  31. Sharina, I.G., E. Martin, A. Thomas, K.L. Uray and F. Murad, 2003. CCAAT-binding factor regulates expression of the β1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line. Proc. Natl. Acad. Sci. USA, 100: 11523-11528.
    Direct Link  |  
  32. Martin, E., I. Sharina, A. Kots and F. Murad, 2003. A constitutively activated mutant of human soluble guanylyl cyclase (sGC): Implication for the mechanism of sGC activation. Proc. Natl. Acad. Sci. USA, 100: 9208-92013.
    Direct Link  |  
  33. Irie, Y., M. Saeki, Y. Kamisaki, E. Martin and F. Murad, 2003. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc. Natl. Acad. Sci. USA, 100: 5634-5639.
    Direct Link  |  
  34. Martin, E., Y.C. Lee and F. Murad, 2001. YC-1 activation of human soluble guanylyl Cyclase has both heme-dependent and heme-independent components. Proc. Natl. Acad. Sci. USA, 98: 12938-12942.
    Direct Link  |  
  35. Davis, K.L., E. Martin, I.V. Turko and F. Murad, 2001. Novel effects of nitric oxide. Ann. Rev. Pharmacol. Toxicol., 41: 203-236.
    CrossRef  |  PubMed  |  Direct Link  |  
  36. Sharina, I.G., J.S. Krumenacker, E. Martin and F. Murad, 2000. Genomic organization of α1 and β1 subunits of the mammalian soluble guanylyl cyclase genes. Proc. Natl. Acad. Sci. USA, 97: 10878-10883.
    Direct Link  |  
  37. Martin, E., K. Davis, K. Bian, Y.C. Lee and F. Murad, 2000. Cellular signaling with Nitric Oxide and cyclic guanosine monophosphate. Semin. Perinatol., 24: 2-6.
    Direct Link  |  
  38. Lee, Y.C., E. Martin and F. Murad, 2000. Human recombinant soluble guanylyl cyclase: Expression, purification and regulation. Proc. Natl. Acad. Sci. USA, 97: 10763-10768.
    Direct Link  |  
  39. Balabanli, B., Y. Kamisaki, E. Martin and F. Murad, 1999. Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosine. Proc. Natl. Acad. Sci. USA, 96: 13136-13141.
    Direct Link  |  
  40. Kamisaki, Y., K. Wada, K. Bian, B. Balabanli and K. Davis et al., 1998. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA, 95: 11584-11589.
    Direct Link  |  
  41. Zaychikov, E., E. Martin, L. Denissova, M. Kozlov and V. Markovtsov et al., 1996. Mapping of catalytic residues in the RNA polymerase active center. Science, 273: 107-109.
    Direct Link  |  
  42. Cho, H.J., E. Martin, Q.W. Xie, S. Sassa and C. Nathan, 1995. Inducible nitric oxide synthase: Identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc. Natl. Acad. Sci. USA, 92: 11514-11518.
    Direct Link  |  
  43. Martin, E., C. Nathan and Q.W. Xie, 1994. Role of interferon regulatory factor 1 in Induction of nitric oxide synthase. J. Exp. Med., 180: 977-984.
    Direct Link  |  
  44. Kashlev, M., E. Martin, A. Polyakov, K. Severinov, V. Nikiforov and A. Goldfarb, 1993. Histidine-tagged RNA polymerase: Dissection of the transcription cycle using immobilized enzyme. Gene, 130: 9-14.
    CrossRef  |  
  45. Martin, E., V. Sagitov, E. Burova, V. Nikiforov and A. Goldfarb, 1992. Genetic dissection of the transcription cycle. A mutant RNA polymerase that cannot hold onto a promoter. J. Biol. Chem., 267: 20175-20180.
    Direct Link  |  
  46. Gragerov, A.I., E. Martin, M.A. Krupenko, M.V. Kashlev and V.G. Nikiforov, 1991. Protein aggregation and inclusion body formation in Escherichia coli rpoH mutant defective in heat shock protein induction. FEBS Lett., 291: 222-224.
    CrossRef  |