Dr. Saad Abdel-Hamid El-Sayed  Hamad

Dr. Saad Abdel-Hamid El-Sayed Hamad

Professor
Zagazig University, Egypt


Highest Degree
Ph.D. in Mechanical Engineering from Cairo University, Egypt

Share this Profile

Area of Interest:

Physical Science Engineering
100%
Mechanical Behavior
62%
Mechanical Dynamics
90%
Mechatronics Systems
75%
Mass Spectrometry
55%

Selected Publications

  1. Hanjian, L., C. Huanying, H. Song, H. Limo and X. Kai et al., 2020. Combustion behavior of large size coal over a wide range of heating rates in a concentrating photothermal reactor. Fuel Process. Technol., Vol. 197. 10.1016/j.fuproc.2019.106187.
    CrossRef  |  Direct Link  |  
  2. El-Sayed, S.A. and M.E. Mostafa, 2020. Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models. RSC Adv., 10: 18160-18179.
    CrossRef  |  Direct Link  |  
  3. EL-Sayed, S.A., 2020. Analytical and numerical solutions of sodium particle ignition based on the thermal explosion theory with different forms of reaction rates and variable thermal conductivity. Ann. Nucl. Energy, 10.1016/j.anucene.2020.107372.
    CrossRef  |  Direct Link  |  
  4. Mostafa, M.E., S. Hu, Y. Wang, S. Su, X. Hu, S.A. Elsayed and J. Xiang, 2019. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable Sustainable Energy Rev., 105: 332-348.
    CrossRef  |  Direct Link  |  
  5. Mostafa, M.E., L. He, J. Xu, S. Hu and Y. Wang et al., 2019. Investigating the effect of integrated CO2 and H2 O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM). Energy, 179: 343-357.
    CrossRef  |  Direct Link  |  
  6. Mostafa, M.E., H. Tang, J. Xu, H.Y. Chi and K. Xu et al., 2019. Experimental study of ignition and combustion characteristics of mixed rice straw and sewage sludge solid and hollow spherical pellets in a plasma combustion system. Key Eng. Mater., 797: 327-335.
    Direct Link  |  
  7. El‐Sayed, S.A., M.A. Ismail and M.E. Mostafa, 2019. Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environ. Prog. Sustainable Energy, 38: 1-14.
    CrossRef  |  Direct Link  |  
  8. El-Sayed, S.A. and E.H. Noseir, 2019. Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD  modeling. Appl. Thermal Eng., 10.1016/j.applthermaleng.2019.113767.
    CrossRef  |  Direct Link  |  
  9. El-Sayed, S.A. and E.H. Noseir, 2019. Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling. Applied Ther. Eng., Vol. 158. 10.1016/j.applthermaleng.2019.113767.
    CrossRef  |  Direct Link  |  
  10. El-Sayed, S., 2019. Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA. Eng. Agric., Environ. Food, 12: 460-469.
    CrossRef  |  Direct Link  |  
  11. El-Sayed, S.A., A.A. El-baz and E.H. Noseir, 2018. Sesame and broad bean stalks: mixing characteristics of chips as a biomass fuel for bubbling fluidized bed combustor. Int. J. Chem. Reactor Eng., 10.1515/ijcre-2017-0138.
    CrossRef  |  Direct Link  |  
  12. El-Sayed, S.A., A.A. El-baz and E.H. Noseir, 2018. Sesame and broad bean plant residue: Thermogravimetric investigation and devolatilization kinetics analysis during the decomposition in an inert atmosphere. J. Brazilian Soc. Mech. Sci. Eng., Vol. 40. 10.1007/s40430-018-1356-5.
    CrossRef  |  Direct Link  |  
  13. El-Sayed, S.A., A.A. El-Baz and E.H. Noseir, 2018. Sesame and broad bean stalks: Mixing characteristics of chips as a biomass fuel for bubbling fluidized bed combustor. Int. J. Chem. Reactor Eng., Vol. 16. 10.1515/ijcre-2017-0138.
    CrossRef  |  
  14. El-Sayed, S.A., 2018. Self-ignition of dust cloud in a hot gas. J. Braz. Soc. Mech. Sci. Eng., Vol. 40. 10.1007/s40430-018-1200-y.
    CrossRef  |  
  15. El-Sayed, S.A., 2018. Self-ignition of dust cloud in a hot gas. J. Braz. Soc. Mech. Sci. Eng., 10.1007/s40430-018-1200-y.
    CrossRef  |  Direct Link  |  
  16. El-Sayed, S.A. and M.K.E. Mohamed, 2018. Mechanical properties and characteristics of wheat straw and pellets. Energy Environ., 29: 1224-1246.
    CrossRef  |  Direct Link  |  
  17. El-Sayed, S.A. and M.E. Mostafa, 2018. Combustion and emission characteristics of egyptian sugarcane bagasse and cotton stalks powders in a bubbling fluidized bed combustor. Waste Biomass Valorization. 10.1007/s12649-018-0199-8.
    CrossRef  |  
  18. El-Sayed, S.A. and M. Khairy, 2018. Investigation of combustion and emissions of single wheat dust pellet in a fixed-bed combustor. Int. J. Heat Technol., 36: 525-542.
  19. El-Sayed, S.A. and M. Khairy, 2018. An experimental study of combustion and emissions of wheat straw pellets in high-temperature air flows. Combustion Sci. Technol., 190: 222-251.
    CrossRef  |  Direct Link  |  
  20. El-Sayed, S.A. and E.H. Noseir, 2018. Experimental investigation of combustion characteristics and emissions for a pilot-scale bubbling fluidized bed combustor fueled by biomass chips of sesame and broad bean stalks. Combust. Sci. Technol., 10.1080/00102202.2018.1555535.
    CrossRef  |  Direct Link  |  
  21. El-Sayed, S. and M. Khairy, 2018. Assessment of the combustion and emission behavior of crushed corn cob pellets in a Fixed bed combustor. J. Thermal Sci. Eng. Applic. 10.1115/1.4040964.
    CrossRef  |  
  22. El-Sayed S.A., 2018. Ignition of a pyrolysis wooden particle based on the thermal explosion theory. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 42: 317-327.
    CrossRef  |  Direct Link  |  
  23. El‐Sayed, S.A., T.M. Khass and M.E. Mostafa, 2017. Thermo‐physical and kinetics parameters determination and gases emissions of self‐ignition of sieved rice husk of different sizes on a hot plate. Asia‐Pacific J. Chem. Eng., 12: 536-550.
    CrossRef  |  Direct Link  |  
  24. El-Sayed, S.A. and M. Khairy, 2017. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder. Iranica J. Energy Environ., 8: 71-87.
  25. El-Sayed, S.A. and M.E.S. Mostafa, 2016. Estimation of thermal and kinetic parameters of sugarcane bagasse and cotton stalks dust layers from hot surface ignition tests. Combustion Sci. Technol., 188: 1655-1673.
    CrossRef  |  Direct Link  |  
  26. El-Sayed, S.A., 2015. Ignition characteristics for thermal runaways of hazard chemical reactions of different degree of reactions. Int. J. Energetic Mater., 1: 31-55.
    Direct Link  |  
  27. El-Sayed, S.A. and M.E. Mostafa, 2015. Thermal analysis and kinetic parameters determination of biomass pyrolysis using (TGA/DTG) and (DTA) at different heating rates. Waste Biomass Valorization J., 6: 401-415.
  28. El-Sayed, S.A. and M. Khairy, 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 6: 157-170.
    CrossRef  |  Direct Link  |  
  29. El-Sayed, S.A. and M.E. Mostafa, 2014. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion Manage., 85: 165-172.
    CrossRef  |  Direct Link  |  
  30. El-Sayed, S.A. and M.E. Mostafa, 2014. Analysis of grain size statistic and particle size distribution of biomass powders. Waste Biomass Valorization, 5: 1005-1018.
    CrossRef  |  Direct Link  |  
  31. El-Sayed, S.A., 2013. Explosion characteristics of a volatile explosive. Open Thermodynamics J., 7: 88-102.
    CrossRef  |  Direct Link  |  
  32. El-Sayed, S.A. and T.M. Khass, 2013. Smoldering combustion of rice husk dusts on a hot surface. Combustion Explosion Shock Waves, 49: 159-166.
    CrossRef  |  Direct Link  |  
  33. El-Sayed, S.A., S.A. El-Sayed and M.M. Saadoun, 2012. Experimental study of heat transfer to flowing air inside a circular tube with longitudinal continuous and interrupted fins. J. Electr. Cooling Thermal Control, 2: 1-16.
    Direct Link  |  
  34. El-Sayed, S.A., 2010. Letter to editor. Process Safety Environ. Protect., 88: 446-448.
  35. El-Sayed, S.A., 2009. Ignition characteristics, conditions of criticality and disappearance of criticality of cumene hydroperoxide reaction by modeling approach. Process Safety Environ. Protect., 87: 293-299.
    CrossRef  |  Direct Link  |  
  36. El-Sayed, S.A., 2008. Critical and transition conditions for ignition of a carbon particles dust cloud in an adiabatic confined vessel. Combustion Sci. Technol., 180: 1572-1587.
    CrossRef  |  Direct Link  |  
  37. El-Sayed, S.A., 2006. Effect of degree of reaction on critical conditions and times to ignition of a gas mixture explosion. Combustion Sci. Technol., 178: 1055-1086.
    CrossRef  |  Direct Link  |  
  38. El-Sayed, S.A., S.M. Mohamed, A.A. Abdel-Latif and E.A. Abdel-Hamid, 2004. Experimental study of heat transfer and fluid flow in longitudinal rectangular-fin array located in different orientations in fluid flow. Exp. Thermal Fluid Sci., 29: 113-128.
    CrossRef  |  Direct Link  |  
  39. El-Sayed, S.A., 2004. Adiabatic thermal explosion of a solid-gas mixture. Combust. Sci. Tech., 176: 237-256.
  40. El-Sayed, S.A., 2003. Thermal explosion of autocatalytic reaction. J. Loss Prevention Process Ind., 16: 249-257.
    CrossRef  |  Direct Link  |  
  41. El-Sayed, S.A., 2003. The criteria of criticality and transition conditions of gas explosion. Combustion Sci. Technol., 175: 225-251.
    CrossRef  |  Direct Link  |  
  42. El-Sayed, S.A., 2003. Explosion characteristics of autocatalytic reaction. Combustion Flame, 133: 375-378.
    Direct Link  |  
  43. El-Sayed, S.A., 2003. Critical and transition conditions of gaseous explosion. J. Loss Prevention Process Ind., 16: 281-288.
    CrossRef  |  Direct Link  |  
  44. Hanafi, A.S., S.A. El-Sayed and M.E. Mostafa, 2002. Fluid flow and heat transfer around circular cylinder-flat and curved plates combinations. Exp. Thermal Fluid Sci., 25: 631-649.
    CrossRef  |  Direct Link  |  
  45. El-Sayed, S.A., S.M. Mohamed, A.M. Abdel-Latif and E.A. Abdel-Hamid, 2002. Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular-fin arrays of different geometries and shrouded fin array. Exp. Thermal Fluid Sci., 26: 879-900.
    CrossRef  |  Direct Link  |  
  46. Abou-Arab, T.W., S.A. El-Sayed, M.M. Shamloul and T.M. Khass, 2001. Study of combustion characteristics of coflowing gas and liquid fuel stream. Energy Fuels, 15: 1369-1382.
    CrossRef  |  Direct Link  |  
  47. El-Sayed, S.A. and A.M. Abdel-Latif, 2000. Smoldering combustion of dust layer on hot surface. J. Loss Prevention Process Ind., 13: 509-517.
    CrossRef  |  Direct Link  |  
  48. Shouman, A.R. and S.A. El-Sayed, 1999. Accounting for reactant consumption in the thermal explosion theory: IV-numerical solution of the Arrhenius problem. Combustion Flame, 117: 422-428.
  49. Shouman, A.R. and S.A. El-Sayed, 1998. Accounting for reactant consumption in the thermal explosion theory: III-Criticality conditions for the Arrhenius problem. Combustion Flame, 113: 212-223.
  50. Shouman, A.R. and S.A. El-Sayed, 1997. Accounting for reactant consumption in the thermal explosion problem part II: A direct solution with application to the Frank-Kamenetskii problem. Combustion Flame, 108: 361-386.
    CrossRef  |  Direct Link  |  
  51. Elkotb, M.M., S.A. El-Sayed, R.M. El-Taher and A.M.E. Abdel-Latif, 1997. Organic dust ignition in the high temperature flow behind a shock wave. Process Safety Environ. Protect., 75: 14-18.
    CrossRef  |  Direct Link  |  
  52. El-Sayed, S.A., S.A. El-Sayed, M.E. Abdel-Hamid and M.M. Sadoun, 1997. Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp. Thermal Fluid Sci., 15: 1-15.
    CrossRef  |  Direct Link  |  
  53. Elkotb, M.M., S.A. El-Sayed, R.M. El-Taher and A.M.E. Abdel-Latif, 1996. Experimental study of organic dust ignition behind shock waves. J. Loss Prevention Process Ind., 9: 249-253.
    Direct Link  |  
  54. El-Sayed, S.A., 1996. Thermal explosion of dispersed media: Critical conditions for discrete particles in an inert or a reactive matrix. J. Loss Prevention Process Ind., 9: 383-392.
    Direct Link  |  
  55. El-Sayed, S.A., 1996. Ignition characteristics of metal ignition in the thermal explosion theory. J. Loss Prev. Process Ind., 9: 393-400.
  56. El-Sayed, S.A., 1995. Ignition and transition conditions for inflammation and extinction for a first-order heterogeneous reaction. J. Loss Prevention Process Ind., 8: 237-243.
    Direct Link  |  
  57. El-Sayed, S.A., 1995. Effect of heating a semi-transparent medium by radiant energy on ignition characteristics in thermal explosion theory. J. Loss Prevention Process Ind., 8: 103-110.
    Direct Link  |  
  58. El-Sayed, S.A., 1994. Critical conditions in the uniform systems with variable heat transfer coefficient in the thermal explosion theory. Combustion Flame, 98: 231-240.
  59. Shouman, A.R. and S.A. El-Sayed, 1992. Accounting for reactant consumption in the thermal explosion theory: I-Mathematical foundation. Combustion Flame, 88: 321-344.