Dr. Murat  Sari

Dr. Murat Sari

Assistant Professor
Yildiz Technical University, Turkey


Highest Degree
Ph.D. in Applied Mathematics from University of South Wales, U.K.

Share this Profile

Biography

Dr. Murat Sari is currently working as Assistant Professor at Pamukkale University, Turkey, Department of Mathematics, Turkey. He has completed his Ph.D. in Applied Mathematics from University of South Wales, U.K. Previously he was appointed as Research Assistant, Lecturer and Assistant Professor at Pamukkale University, Department of Mathematics, and Visiting Researcher at University of Glamorgan. He successfully supervised 10 MSc and 2 Ph.D. Dissertations. His main area of research interest focuses on Computational Methods, Numerical Methods, Heuristic Methods, Numerical Solutions of Differential Equations, Modelling of Nonlinear Behaviours, Mathematical Modelling, Economical Modelling, Biomechanical Modelling, and Seismic Wave Propagation. He has published 14 research articles in international reviewed journals, 3 book and book chapters, 3 national reviewed papers, 10 international proceeding/posters and 24 other publications/talks contributed as author/co-author. He also completed 4 research projects. He is also serving as referee and editor for several journals.

Area of Interest:

Mathematics
100%
Applied Mathematics
62%
Algebra
90%
Numerical Analysis
75%
Statistics Theory
55%

Selected Publications

  1. Altinoglu, F.F., M. Sari and A. Aydin, 2015. Detection of lineaments in denizli basin of Western Anatolia Region using bouguer gravity data. Pure Applied Geophys., 172: 415-425.
    CrossRef  |  Direct Link  |  
  2. Sari, M., A. Gunay and G. Gurarslan, 2014. A solution to the telegraph equation by using DGJ method. Int. J. Nonlinear Sci., 17: 57-66.
    Direct Link  |  
  3. Sari, A., M. Sari and C. Popescu, 2014. Effects of various economic factors on Turkish imports. Econ. Insights Trends Challenges, 3: 1-9.
    Direct Link  |  
  4. Gurarslan, G., H. Karahan, D. Alkaya, M. Sari and M. Yasar, 2013. Numerical solution of Advection-diffusion equation using a Sixth-order compact finite difference method. Math. Problems Eng., Vol. 7. 10.1155/2013/672936.
    CrossRef  |  
  5. Dag, I., D. Irk and M. Sari, 2013. The extended cubic B-spline algorithm for a modified regularized long wave equation. Chin. Phys. B, 22: 1-6.
  6. Adak, M., O. Sert, M. Kalay and M. Sari, 2013. Symmetric teleparallel gravity: Some exact solutions and spinor couplings. Int. J. Modern Phys. A, Vol. 28. 10.1142/S0217751X13501674.
    CrossRef  |  
  7. Sari, M., E. Gulbandilar and A. Cimbiz, 2012. Prediction of Low Back Pain with Two Expert Systems. J. Med. Syst., 36: 1523-1527.
    CrossRef  |  PubMed  |  Direct Link  |  
  8. Sari, M., G. Gurarslan and A. Zeytinoglu, 2011. High-order finite difference schemes for the solution of the generalized Burger's-fisher equation. Int. J. Numer. Methods Biomed. Eng., 27: 1296-1308.
    CrossRef  |  
  9. Sari, M., G. Gurarslan and A. Zeytinoglu, 2011. High-order finite difference schemes for numerical solution of the Burger's-Huxley equation. Numer. Methods Partial Differ. Equ., 27: 1313-1326.
  10. Sari, M., G. Gurarslan and A. Zeytinoglu, 2011. Erratum to: High-order finite difference schemes for solving the advection-diffusion equation, mathematical and computational applications, vol. 15, no. 3, 449-460, 2010. Math. Comput. Appl., 16: 979-979.
    Direct Link  |  
  11. Sari, M., A. Gunay and G. Gurarslan, 2011. Approximate solutions of linear and nonlinear diffusion equations by using Daftardar-Gejji-Jafari's method. Int. J. Math. Modell. Numer. Optimisation, 2: 376-386.
  12. Sari, M., 2011. Differential quadrature solutions of the generalized Burgers-Fisher equation with a strong stability preserving high-order time integration. Math. Comput. Appl., 16: 477-486.
    Direct Link  |  
  13. Sari, M. and G. Gurarslan, 2011. A sixth-order compact finite difference method for the one-dimensional sine-gordon equation. Int. J. Numer. Methods Biomed. Eng., 27: 1126-1138.
  14. Gurarslan, G. and M. Sari, 2011. Numerical solutions of linear and nonlinear diffusion equations by a Differential Quadrature Method (DQM). Int. J. Numer. Methods Biomed. Eng., 27: 69-77.
    CrossRef  |  Direct Link  |  
  15. Tekkoyun, M. and M. Sari, 2010. Bi-para-mechanical systems on the bi-Lagrangian manifold. Physica B Condensed Matter, 405: 2390-2393.
    CrossRef  |  
  16. Sari, M., G. Gurarslan and I. Dag, 2010. A compact finite difference method for the solution of the generalized Burgers-Fisher equation. Numerical Methods Partial Differential Equations, 26: 125-134.
  17. Sari, M., G. Gurarslan and A. Zeytinoglu, 2010. High-order finite difference schemes for solving the advection-diffusion equation. Math. Comput. Appl., 15: 449-460.
    Direct Link  |  
  18. Cetiner, B.G., M. Sari and O. Borat, 2010. A neural network based traffic-flow prediction model. Math. Comput, Appli., 15: 269-278.
    Direct Link  |  
  19. Cetiner, B.G. and M. Sari, 2010. Tibial rotation assessment using artificial neural networks. Math. Comput. Appl., 15: 34-44.
    Direct Link  |  
  20. Canivar, A., M. Sari and I. Dag, 2010. A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines. Physica B Condensed Matter, 405: 3376-3383.
    CrossRef  |  
  21. Aburas, H.M., B.G. Cetiner and M. Sari, 2010. Dengue confirmed-cases prediction: A neural network model. Expert Syst. Appl., 37: 4256-4260.
    CrossRef  |  
  22. Yucel, U. and M. Sari, 2009. Differential quadrature method (DQM) for a class of singular two-point boundary value problems. Int. J. Comput. Math., 86: 465-475.
    Direct Link  |  
  23. Sari, M., 2009. Solution of the porous media equation by a compact finite difference method. Math. Problems Eng., 10.1155/2009/912541.
    CrossRef  |  
  24. Sari, M. and G. Gurarslan, 2009. Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method. Math. Prob. Eng. 10.1155/2009/370765.
    CrossRef  |  
  25. Sari, M. and G. Gurarslan, 2009. A sixth order compact finite difference scheme to the numerical solutions of Burgers' equation. Appl. Math. Comput., 208: 475-483.
    Direct Link  |  
  26. Sari, M. and B.G. Cetiner, 2009. Predicting effect of physical factors on tibial motion using artificial neural networks. Expert Syst. Appli., 36: 9743-9746.
    CrossRef  |  
  27. Cetiner, B.G., M. Sari and H.M. Aburas, 2009. Recognition of dengue disease patterns using artificial neural Networks. Proceedings of the 5th International Advanced Technologies Symposium, May 13-15, Karabuk, Turkey, pp: 359-362.
  28. Sari, M., 2008. Differential quadrature method for singularly perturbed two-point boundary value problems. J. Applied Sci., 8: 1091-1096.
    CrossRef  |  Direct Link  |  
  29. Gulbandilar, E., A. Cimbiz, M. Sari and H. Ozden, 2008. Relationship between skin resistance level and static balance in type II diabetic subjects. Diabetic Res. Clin. Practice, 82: 335-339.
    CrossRef  |  PubMed  |  Direct Link  |  
  30. Sari, M., 2007. Relationship between physical factors and tibial motion in healthy subjects: 2D and 3D analysis. Adv. Ther., 24: 772-783.
    CrossRef  |  
  31. Oguz, E.O., E.S. Conkur and M. Sari, 2007. SHETEREOM I Simple Windows based software for stereology. Volume and Number Estimations Image Anal. Stereol., 26: 45-50.
  32. Sari, M. and I. Demir, 2006. Wave modelling through layered media using the BEM. J. Applied Sci., 6: 1703-1711.
    CrossRef  |  Direct Link  |  
  33. Cimbiz, A., U. Cavlak, M. Sari, H. Hallaceli and F. Beydemir, 2006. A new clinical design measuring the vertical axial rotation through tibial shaft resulting from passive knee and subtalar joints rotation in healthy subjects: A reliability study. J. Med. Sci., 6: 751-757.
    CrossRef  |  Direct Link  |  
  34. Sari, M., Y.S. Murat and M. Kirabali, 2005. Fuzzy logic modelling approach and applications. Dumlupinar Univ. J. Inst. Sci., 9: 77-92.
  35. Sari, M., 2003. The time domain boundary element method for scalar wave problems. J. Eng. Sciences (PAU), 9: 129-136.
  36. Sari, M. and I. Demir, 2002. Acoustic wave modelling using two different numerical methods. J. Eng. Sci., 8: 211-217.